Stability of binary mixtures in electric field gradients.

J Chem Phys

Department of Chemical Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Published: November 2009

We consider the influence of electric field gradients on the phase behavior of nonpolar binary mixtures. Small fields give rise to smooth composition profiles, whereas large enough fields lead to a phase-separation transition. The critical field for demixing as well as the equilibrium phase-separation interface are given as a function of the various system parameters. We show how the phase diagram in the temperature-composition plane is affected by electric fields, assuming a linear or nonlinear constitutive relations for the dielectric constant. Finally, we discuss the unusual case where the interface appears far from any bounding surface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3257688DOI Listing

Publication Analysis

Top Keywords

binary mixtures
8
electric field
8
field gradients
8
stability binary
4
mixtures electric
4
gradients consider
4
consider influence
4
influence electric
4
gradients phase
4
phase behavior
4

Similar Publications

The density (ρ), speed of sound (), and refractive index ( ) of ,-dimethylacetamide (DMA) with 1-butanol, 1-pentanol, furfural (FFL), or furfuryl alcohol (FA) as a function of composition and at = 293.15 to 323.15 K with an interval of 10 K and atmospheric pressure were measured.

View Article and Find Full Text PDF

Densities and viscosities of aqueous 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ) solutions with and without CO are measured from 20 to 80 °C at ambient pressure. Redlich-Kister-based correlations are proposed for the excess molar volumes and viscosity deviation of the binary and ternary mixtures. Empirical correlations are developed to quantitatively describe the effect of CO on the density and viscosity of the aqueous AMP/PZ solutions.

View Article and Find Full Text PDF

Sound speed data measured using a dual-path pulse-echo instrument are reported for pure -1,2-dichloroethene (R-1130(E)) and an azeotropic blend of -1,1,1,4,4,4-hexafluorobutene (R-1336mzz(Z)) and R-1130(E) with a composition of 74.8 mass % R-1336mzz(Z) with the balance being R-1130(E). The azeotropic blend of R-1336mzz(Z)/1130(E) is classified as R-514A in ANSI/ASHRAE standard 34.

View Article and Find Full Text PDF

The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!