Fluorescence microscopy and conductivity measurements reveal a remarkably strong effect of hydrophobic groups on the mobility of protons in water. The addition of 5 M of tetramethylurea (4 methyl groups per molecule) results in a reduction of the proton mobility by a factor of approximately 10: hydrophobic hydration strongly suppresses proton mobility. These observations demonstrate the collective nature of aqueous proton transport.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9083094DOI Listing

Publication Analysis

Top Keywords

proton mobility
12
hydrophobic hydration
8
suppression proton
4
mobility
4
mobility hydrophobic
4
hydration fluorescence
4
fluorescence microscopy
4
microscopy conductivity
4
conductivity measurements
4
measurements reveal
4

Similar Publications

Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

The increased levels of carbon dioxide (CO) emissions due to the combustion of fossil fuels and the consequential impact on global climate change have made CO capture, storage, and utilization a significant area of focus for current research. In most electrochemical CO applications, water is used as a proton donor due to its high availability and mobility and use as a polar solvent. Additionally, supercritical CO is a promising avenue for electrochemical applications due to its unique chemical and physical properties.

View Article and Find Full Text PDF

Online monitoring of propofol concentrations in exhaled breath.

Heliyon

December 2024

Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Propofol, a widely used intravenous anesthetic agent, requires accurate monitoring to ensure therapeutic efficacy and prevent oversedation. Recent developments in modern analytical instrumentation have led to significant breakthroughs in on-line analysis of exhaled breath. This review discusses several sophisticated analytical methods that have been explored for noninvasive, real-time monitoring of propofol concentrations, including proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, and gas chromatography coupled to surface acoustic wave sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!