Ferromagnetic nanoscale electron correlation promoted by organic spin-dependent delocalization.

J Am Chem Soc

Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.

Published: December 2009

We describe the electronic structure and the origin of ferromagnetic exchange coupling in two new metal complexes, NN-SQ-Co(III)(py)(2)Cat-NN (1) and NN-Ph-SQ-Co(III)(py)(2)Cat-Ph-NN (2) (NN = nitronylnitroxide radical, Ph = 1,4-phenylene, SQ = S = (1)/(2) semiquinone radical, Cat = S = 0 catecholate, and py = pyridine). Near-IR electronic absorption spectroscopy for 1 and 2 reveals a low-energy optical band that has been assigned as a Psi(u) --> Psi(g) transition involving bonding and antibonding linear combinations of delocalized dioxolene (SQ/Cat) valence frontier molecular orbitals. The ferromagnetic exchange interaction in 1 is so strong that only the high-spin quartet state (S(T) = (3)/(2)) is thermally populated at temperatures up to 300 K. The temperature-dependent magnetic susceptibility data for 2 reveals that an excited state spin doublet (S(T) = (1)/(2)) is populated at higher temperatures, indicating that the phenylene spacer modulates the magnitude of the magnetic exchange. The valence delocalization within the dioxolene dyad of 2 results in ferromagnetic alignment of two localized NN radicals separated by over 22 A. The ferromagnetic exchange in 1 and 2 results from a spin-dependent delocalization (double exchange type) process and the origin of this strong electron correlation has been understood in terms of a valence bond configuration interaction (VBCI) model. We show that ferromagnetic coupling promoted by organic mixed-valency provides keen insight into the ability of single molecules to communicate spin information over nanoscale distances. Furthermore, the strong interaction between the itinerant dioxolene electron and localized NN electron spins impacts our ability to understand the exchange interaction between delocalized electrons and pinned magnetic impurities in technologically important dilute magnetic semiconductor materials. The long correlation length (22 A) of the itinerant electron that mediates this coupling indicates that high-spin pi-delocalized organic molecules could find applications as nanoscale spin-polarized electron injectors and molecular wires.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505726PMC
http://dx.doi.org/10.1021/ja904648rDOI Listing

Publication Analysis

Top Keywords

ferromagnetic exchange
12
electron correlation
8
promoted organic
8
spin-dependent delocalization
8
exchange interaction
8
ferromagnetic
6
electron
6
exchange
6
ferromagnetic nanoscale
4
nanoscale electron
4

Similar Publications

Advancing Room-Temperature Magnetic Semiconductors with Organic Radical Charge Transfer Cocrystals.

Adv Mater

January 2025

Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.

Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.

View Article and Find Full Text PDF

The construction of multilevel magnetic states using materials with perpendicular magnetic anisotropy (PMA) offers a novel approach to enhancing the storage density and read/write efficiency of nonvolatile magnetic memory devices. In this study, optically readable multilevel magnetic domain states are achieved by inducing asymmetric interlayer interactions and decoupling the magnetic reversal behavior of individual ferromagnetic (FM) layers in exchange-biased FM multilayers with PMA. Hepta-level magnetic domain states are formed in [Co/Pt] FM multilayers grown on an antiferromagnetic FeO layer within a relatively low magnetic field range of ∼±400 Oe.

View Article and Find Full Text PDF

In this work, using first-principles calculations, we predict a promising class of two-dimensional ferromagnetic semiconductors, namely Janus PrXY (X ≠ Y = Cl, Br, I) monolayers. Through first-principles calculations, we found that PrXY monolayers have excellent dynamic and thermal stability, and their band structures, influenced by magnetic exchange and spin-orbital coupling, exhibit significant valley polarization. Between and - valleys, the Berry curvature values are opposite to each other, resulting in the anomalous valley Hall effect.

View Article and Find Full Text PDF

This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.

View Article and Find Full Text PDF

Noncollinear Magnetic Configurations in Frustrated Magnets.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!