Structural and kinetic properties of alpha-tocopherol in phospholipid bilayers, a molecular dynamics simulation study.

J Phys Chem B

Key Lab of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China.

Published: December 2009

Structural and kinetic properties of vitamin E in biomembranes provide the key to understanding the biological functions of this lipophilic vitamin. We report a series of molecular dynamics simulations of two alpha-tocopherol/phosphatidylcholine systems and two alpha-tocopherol/phosphatidylethanolamine systems in water at 280, 310, and 350 K. The preferential position, hydrogen bonding, orientation, and dynamic properties of the alpha-tocopherol molecule in the bilayers have been examined. In all the four systems simulated, the vitamin remains in one leaflet of lipid bilayer at 280 and 310 K but flips over from one side to the other at 350 K within 200 ns of the simulation. The hydroxyl oxygen in the headgroup of alpha-tocopherol preferred a location between the third and the fifth carbon atom in the sn-2 acyl chains of the lipids. Hydrogen bonding analysis shows that the hydrogen bonds are mainly with the oxygens of the fatty acid esters rather than with the phosphate oxygens of the lipid molecule, and those with the amino groups are trivial in the case of phosphatidylethanolamines, at all three temperatures. The hydrogen bonds with phosphatidylethanolamines are more stable than those with phosphatidylcholines at low temperatures. The orientation of alpha-tocopherol in the bilayers is relatively flexible: the chromanol ring takes various tilt angles with respect to the bilayer normal, and the isoprenyl chain is mobile and able to adopt many different conformers. Calculation of lateral diffusion coefficients of alpha-tocopherol and phospholipid molecules shows that alpha-tocopherol has a comparable diffusion rate with phospholipid molecules at the gel phase but diffuses more rapidly than lipid molecules at the liquid-crystal phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9074306DOI Listing

Publication Analysis

Top Keywords

structural kinetic
8
kinetic properties
8
properties alpha-tocopherol
8
alpha-tocopherol phospholipid
8
molecular dynamics
8
280 310
8
hydrogen bonding
8
hydrogen bonds
8
phospholipid molecules
8
alpha-tocopherol
6

Similar Publications

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

The majority of enantioselective organocatalytic reactions occur in apolar or weakly polar organic solvents. Nevertheless, the influence of solute-solvent van der Waals forces on the relative kinetics of competitive pathways remains poorly understood. In this study, we provide a first insight into the nature and strength of these interactions at the transition state level using advanced computational tools, shedding light into their influence on the selectivity.

View Article and Find Full Text PDF

The utilization of polyoxometalate-based materials is largely dictated by their redox properties. Detailed understanding of the thermodynamic and kinetic efficiency of charge transfer is therefore essential to the development of polyoxometalate-based systems for target applications. Toward this end, we report electrochemical studies of a series of heteroatom-doped Keggin-type polyoxotungstate clusters [PWO] ( ), [VWO] ( ), [P(VW)O] ( ), and [V(VW)O] ( ) to elucidate the role of the identity and spatial location of heteroatoms and overall cluster charge on the rate constants of electron transfer and redox reaction entropies.

View Article and Find Full Text PDF

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!