Understanding networks of interacting proteins is a major goal in cell biology. The survival of motor neurons protein (SMN) interacts, directly or indirectly, with a large number of other proteins and reduced levels of SMN cause the inherited disorder spinal muscular atrophy (SMA). Some SMN interactions are stable and stoichiometric, such as those with gemins, while others are expected to be transient and substoichiometric, such as the functional interaction of SMN with coilin in Cajal bodies. This study set out to determine whether novel components of the extensive SMN interactome can be identified by a proteomic approach. SMN complexes were immuno-precipitated from HeLa nuclear extracts, using anti-SMN monoclonal antibody attached to magnetic beads, digested with trypsin, separated by capillary-liquid chromatography and analyzed by MALDI TOF/TOF mass spectrometry. One-hundred and one proteins were detected with a p value of <0.05, SMN, gemins and U snRNPs being the dominant "hits". Sixty-nine of these were rejected after MALDI analysis of two control pull-downs using antibodies against unrelated nuclear proteins. The proteins found only in anti-SMN pulldowns were either known SMN partners, and/or contained dimethylated RG domains involved in direct interaction with the SMN tudor domain, or they were known binding partners of such direct SMN interactors. Myb-binding protein 1a, identified as a novel candidate, is a mainly nucleolar protein of unknown function but it partially colocalized with SMN in Cajal bodies in HeLa cell nucleoplasm and, like SMN, was reduced in cells from an SMA patient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr900884g | DOI Listing |
Cell Death Discov
June 2024
Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain.
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end.
View Article and Find Full Text PDFAm J Hum Genet
July 2024
Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria. Electronic address:
The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2022
Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain.
Gemin5 is a multifunctional RNA binding protein (RBP) organized in domains with a distinctive structural organization. The protein is a hub for several protein networks performing diverse RNA-dependent functions including regulation of translation, and recognition of small nuclear RNAs (snRNAs). Here we sought to identify the presence of phosphoresidues on the C-terminal half of Gemin5, a region of the protein that harbors a tetratricopeptide repeat (TPR)-like dimerization domain and a non-canonical RNA binding site (RBS1).
View Article and Find Full Text PDFBioessays
August 2021
Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!