A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mining statistically significant molecular substructures for efficient molecular classification. | LitMetric

Mining statistically significant molecular substructures for efficient molecular classification.

J Chem Inf Model

Department of Computer Science, University of California, Santa Barbara, California, USA.

Published: November 2009

The increased availability of large repositories of chemical compounds has created new challenges in designing efficient molecular querying and mining systems. Molecular classification is an important problem in drug development where libraries of chemical compounds are screened and molecules with the highest probability of success against a given target are selected. We have developed a technique called GraphSig to mine significantly over-represented molecular substructures in a given class of molecules. GraphSig successfully overcomes the scalability bottleneck of mining patterns at a low frequency. Patterns mined by GraphSig display correlation with biological activities and serve as an excellent platform on which to build molecular analysis tools. The potential of GraphSig as a chemical descriptor is explored, and support vector machines are used to classify molecules described by patterns mined using GraphSig. Furthermore, the over-represented patterns are more informative than features generated exhaustively by traditional fingerprints; this has potential in providing scaffolds and lead generation. Extensive experiments are carried out to evaluate the proposed techniques, and empirical results show promising performance in terms of classification quality. An implementation of the algorithm is available free for academic use at http://www.uweb.ucsb.edu/ approximately sayan/software/GraphSig.tar.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci900035zDOI Listing

Publication Analysis

Top Keywords

molecular substructures
8
efficient molecular
8
molecular classification
8
chemical compounds
8
patterns mined
8
mined graphsig
8
molecular
6
graphsig
5
mining statistically
4
statistically molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!