This research presents evidence showing that: (1) lower arthropod herbivory correlates with seedling survival, and (2) spider presence correlates with lower arthropod herbivory, seedling growth, and seedling survival of the tropical rainforest tree species Dipteryx oleifera in eastern Nicaragua. The study was conducted from January 2005 to January 2006 in a 6.37 ha permanent plot established in 2002. Seedling height, spider behavior and presence on seedlings, and percentage of leaf area lost due to arthropod herbivory were measured. Arthropod herbivory was assessed from digital photographs of each seedling within the permanent plot. Seedling fate was followed in order to determine its correlation with spider presence, initial seedling size, and arthropod herbivory. A GLM showed that seedling survival correlated negatively with lower levels of arthropod herbivory (<20%), while seedlings with higher levels of herbivore damage experienced mortalities close to 100%. Results from another GLM suggests that seedling mean height (aprox. 8 cm) would be increased by approximately 1.5 cm for each year that spiders were present on seedlings and would be decreased 0.75 cm in height for each percent unit of arthropod herbivory. We also report a trend toward lower arthropod herbivory in seedlings colonized by spiders with aggressive traits, presumably because more aggressive spiders better defended seedlings against herbivorous arthropods than less aggressive spiders.

Download full-text PDF

Source
http://dx.doi.org/10.15517/rbt.v57i3.5496DOI Listing

Publication Analysis

Top Keywords

arthropod herbivory
24
spider presence
12
seedling survival
12
seedling
9
tropical rainforest
8
rainforest tree
8
dipteryx oleifera
8
lower arthropod
8
permanent plot
8
arthropod
6

Similar Publications

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

A Cytosolic Phosphoglucose Isomerase, OsPGI1c, Enhances Plant Growth and Herbivore Resistance in Rice.

Int J Mol Sci

December 2024

State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.

View Article and Find Full Text PDF

Nymphal feeding suppresses oviposition-induced indirect plant defense in rice.

Nat Commun

January 2025

State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.

View Article and Find Full Text PDF

Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!