We report the use of non-magnetic Al2O3 nano particles deposited between two ferromagnetic La0.5Pr0.2Sr0.3MnO3 (LPSMO) manganite layers with an aim to improve the electronic and magnetotransport properties of the layered supper lattice grown on single crystal STO(100) substrate using Pulsed Laser Deposition (PLD) technique. We studied the electronic-transport and magnetotransport properties of this system wherein Al2O3 particles are expected to act as insulating scattering centers between two ferromagnetic LPSMO layers. The scattering due to additional scattering centers (insulating Al2O3 nano particles) could be controlled by application of external field, resulting in high magnetoresistance (MR) approximately 72% as compared to pristine LPSMO film (MR approximately 51%) at temperature close to their T(M) values. In addition, incorporation of nanostructured Al2O3 barrier between the two ferromagnetic LPSMO layers results in a 2-3 fold increase in the values of temperature coefficient of resistance (TCR) and the field coefficient of resistance (FCR) as compared to pristine LPSMO film, suggesting the use of such nanoengineered manganite layered structure for better device application.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.1182DOI Listing

Publication Analysis

Top Keywords

al2o3 nano
12
scattering centers
12
nano particles
8
magnetotransport properties
8
ferromagnetic lpsmo
8
lpsmo layers
8
compared pristine
8
pristine lpsmo
8
lpsmo film
8
coefficient resistance
8

Similar Publications

Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism.

J Colloid Interface Sci

January 2025

School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China. Electronic address:

The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO, CeO, AlO) were synthesized and evaluated for methane combustion.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Achieving high-performance lead sulfide quantum dot (PbS QD)-based photodetectors requires enhanced carrier transfer, which inevitably leads to an increased dark current. Balancing a high photocurrent and low dark current is crucial. In this work, a bridge-trap structure constructed by the atomic layer deposition of dual oxides is proposed to simultaneously enhance photoresponse performance and reduce dark current.

View Article and Find Full Text PDF

Long-Range Metal-Sorbent Interactions Determine CO Capture and Conversion in Dual-Function Materials.

ACS Nano

January 2025

Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States.

Carbon capture and utilization involve multiple energy- and cost-intensive steps. Dual-function materials (DFMs) can reduce these demands by coupling CO adsorption and conversion into a single material with two functionalities: a sorbent phase and a metal for catalytic CO conversion. The role of metal catalysts in the conversion process seems salient from previous work, but the underlying mechanisms remain elusive and deserve deeper investigation to achieve maximum utilization of the two phases.

View Article and Find Full Text PDF

Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!