A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron transport in dodecylamine capped gold nanocluster films using current sensing atomic force microscope (C-AFM). | LitMetric

Electron transport in dodecylamine capped gold nanocluster films using current sensing atomic force microscope (C-AFM).

J Nanosci Nanotechnol

Centre for Advanced Studies in Materials Science and Solid State Physics, University of Pune, Pune 411007, India.

Published: September 2009

Electron transport across cataphoretically deposited dodecylamine capped gold nanocluster rough films on Si(111) substrate is investigated using current sensing atomic force microscopy. Contact mode images depict uniform deposition of agglomerates of gold nanoparticles. The current images display strong correlation with topographic images. The I-V measurement on a single agglomerate of approximately = 250 nm size at different forces exhibits force dependent threshold voltage. The electron transport from tip to sample is found to be ohmic in contrast to that from sample to tip which, exhibits Fowler-Nordheim behavior up to 35 nN force. At higher forces, the I-V behavior could be attributed to other electron transfer processes such as Schottky/Poole-Frenkel or trapping/detrapping, although no exact mechanism could be identified. The results are discussed in the light of models based on Coulomb blockaded collective charge transport in nanoparticle arrays duly accounting for the potential role of the capping layer.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.1166DOI Listing

Publication Analysis

Top Keywords

electron transport
12
dodecylamine capped
8
capped gold
8
gold nanocluster
8
current sensing
8
sensing atomic
8
atomic force
8
electron
4
transport dodecylamine
4
nanocluster films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!