Molecular dynamics (MD) and quantum mechanical calculations of the Cerulean green fluorescent protein (a variant of enhanced cyan fluorescent protein ECFP) at pH 5.0 and 8.0 are presented, addressing two questions arising from experimental results (Malo et al., Biochemistry 2007;46:9865-9873): the origin of the blue shift of absorption spectrum when the pH is decreased from 8.0 to 5.0, and the lateral chain orientation of the key residue Asp148. We demonstrate that the blue shift is reproduced assuming that a rotation around the single bond of the exocyclic ring of the chromophore takes place when the pH changes from 5.0 to 8.0. We find that Asp148 is protonated and inside the barrel at pH 5.0 in agreement with crystallographic data. However, the hydrogen bond pattern of Asp148 is different in simulations of the solvated protein and in the crystal structure. This difference is explained by a partial closing of the cleft between strands 6 and 7 in MD simulations. This study provides also a structure at pH 8.0: the Asp148 carboxylate group is exposed to the solvent and the chromophore is stabilized in the trans conformation by a tighter hydrogen bond network. This work gives some insight into the relationship between the pH and the chromophore conformation and suggests an interpretation of the very similar fluorescent properties of ECFP and ECFP/H148D. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.22628DOI Listing

Publication Analysis

Top Keywords

absorption spectrum
8
molecular dynamics
8
fluorescent protein
8
blue shift
8
hydrogen bond
8
relation structure
4
structure absorption
4
spectrum cerulean
4
cerulean study
4
study molecular
4

Similar Publications

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy is a spectrum-based technique that quantifies the absorption of infrared light by molecules present in the microbial cell. The aim of the present study was to evaluate the performance of the ATR-FTIR spectroscopic technique via I-dOne software (Version 2.0) compared with the MALDI-TOF MS in identifying spp.

View Article and Find Full Text PDF

Light Spectral-Ranged Specific Metabolisms of Plant Pigments.

Metabolites

December 2024

Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.

Chlorophyll is the primary pigment responsible for capturing light energy during photosynthesis, while carotenoids assist in light absorption and provide photoprotection by dissipating excess energy. Both pigments are essential for plant growth and development, playing distinct and complementary roles in maintaining photosynthetic efficiency and protecting plants from oxidative stress. Because of their function in photosynthesis and photoprotection, chlorophyll and carotenoid accumulation are strongly associated with light conditions, especially blue and red lights, which play key roles in regulating their metabolisms.

View Article and Find Full Text PDF

Self-absorption effect in soft X-ray emission spectra utilized for bandgap evaluation of semiconductors.

Microscopy (Oxf)

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

The self-absorption effects observed in the background intensity just above the Si L-emission spectra of Si and β-Si3N4, and the C K-emission spectra of diamond and graphite were examined. Based on comparisons with reported results, the energy positions of absorption edges-representing the bottom of conduction bands (CB)-were assigned. The self-absorption profiles in the background intensities were consistent with previously reported data.

View Article and Find Full Text PDF

To establish the quality control method of Rhodiola rosea L., the multi-level fingerprinting profile was established. The quality evaluation of Rhodiola rosea L.

View Article and Find Full Text PDF

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!