Testicular steroidogenesis and spermatogenesis during developmental and seasonal changes were investigated in male sika deer (Cervus nippon), a short-day seasonal breeder, to clarify the physiological mechanisms for reproductive function. The immunohistochemical localization of steroidogenic enzymes (P450scc, P450c17, 3betaHSD and P450arom), spermatogenesis and cell proliferation were analyzed in the testes of fetal (164 to 218 days of fetal age), fawn (0 years old), yearling (1 year old) and adult (more than 2 years old) male sika deer. Three kinds of steroidogenic enzymes, P450scc, P450c17 and 3betaHSD, essential for the synthesis of testosterone were located only in the Leydig cells of the testes from the fetal period, and these localizations did not change during developmental or seasonal stages. Immunoreactivity for P450arom, a key enzyme converting testosterone to estradiol, was also localized only in the Leydig cells of testes but was also further limited to the testes of yearlings and adults. Seminiferous tubules had already formed in the fetal testes examined in the present study. Spermatogenesis started in yearlings and was more active in the breeding season. In the adult sika deer testes, the Leydig cells, which displayed immunoreactivities for steroidogenic enzymes, changed to have more cytoplasm in the breeding season than in the non-breeding season. Cell proliferation of Leydig cells was hardly observed in adult testes during seasonal changes. The present results suggested that sika deer testes start to synthesize testosterone from the fetal period, that seasonal changes in testosterone and estradiol syntheses are dependent on the quantitative variation of steroidogenic enzymes synchronized with the size of Leydig cells and that estradiol synthesized in yearling and adult testes makes a contribution to the initiation and recrudescence of spermatogenesis and spermiogenesis in the sika deer.

Download full-text PDF

Source
http://dx.doi.org/10.1262/jrd.09-102tDOI Listing

Publication Analysis

Top Keywords

sika deer
24
steroidogenic enzymes
20
leydig cells
20
seasonal changes
16
developmental seasonal
12
testes
9
immunohistochemical localization
8
localization steroidogenic
8
deer cervus
8
cervus nippon
8

Similar Publications

Diversity and Multiple Infections of in Red Deer and Deer Keds.

Pathogens

December 2024

Department of Parasitology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic.

Bartonellae are zoonotic pathogens with a broad range of reservoir hosts and vectors. To examine sylvatic reservoirs, tissue samples of red deer (, = 114) and their associated deer keds (, = 50; , = 272) collected in the Czech Republic were tested for the presence of using PCR at four loci (, , , ITS); PCR sensitivity was increased significantly by using primers modified for the detection of wildlife-associated bartonellae. One-third of the deer and 70% of the deer keds were positive; within the tested animal tissues, usually the spleen was positive.

View Article and Find Full Text PDF

Characteristics and Differences in the Antler Velvet Microbiota During Regeneration.

Microorganisms

December 2024

Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.

The skin surface has a complex and dynamic ecosystem inhabited by a diverse microbiota. The wound formed by antler velvet shedding can naturally achieve regenerative restoration, but the changes in microbial composition that occur during antler velvet regeneration are largely unknown. In this study, we analyzed the antler velvet microbiota of sika deer at 15 days (Half) and 30 days (Full) post-pedicle casting using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The interplay between the intestinal microbiota and metabolites is believed to influence brain function and the pathogenesis of neurodegenerative conditions through the microbe-gut-brain axis. Sika deer antler protein possesses neuroprotective properties; however, the precise mechanism by which it improves AD remains unclear.

View Article and Find Full Text PDF

Deer antler reserve mesenchyme cells modified with miR-145 promote chondrogenesis in cartilage regeneration.

Front Vet Sci

December 2024

Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.

Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!