Objective: The role of myeloid cell cyclooxygenase-2 (COX-2) in the progression of atherosclerosis has not been clearly defined.
Methods And Results: We investigated the role of COX-2 expressed in the myeloid lineage in the development of atherosclerosis using a myeloid-specific COX-2(-/-) (COX-2(-M/-M)) mouse on a hyperlipidemic apolipoprotein (apo) E(-/-) background (COX-2(-M/-M)/apoE(-/-)). Myeloid COX-2 depletion resulted in significant attenuation of acute inflammation corresponding with decreased PGE(2) levels in an air pouch model. COX-2 depletion in myeloid cells did not influence development of atherosclerosis in COX-2(-M/-M)/apoE(-/-) when compared to apoE(-/-) littermates fed either chow or western diets. The unanticipated lack of contribution of myeloid COX-2 to the development atherosclerosis is not attributable to altered maintenance, differentiation, or mobilization of myeloid and lymphoid populations. Moreover, myeloid COX-2 depletion resulted in unaltered serum prostanoid levels and cellular composition of atherosclerotic lesions of COX-2(-M/-M)/apoE(-/-) mice.
Conclusions: Our results suggest that COX-2 expression in myeloid cells, including macrophages, does not influence the development of atherosclerosis in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859183 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.109.198762 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Cardiology, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.
Background: Atherosclerotic dyslipidemia is associated with an increased risk of type 2 diabetes (T2D). Although previous studies have demonstrated an association between the atherogenic index of plasma (AIP) and insulin resistance, there remains a scarcity of large cohort studies investigating the association between AIP and the long-term risk of T2D in the general population. This study aims to investigate the potential association between AIP and the long-term risk of T2D in individuals with normal fasting plasma glucose levels.
View Article and Find Full Text PDFSci Rep
January 2025
School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New City, Tangshan City, 063210, Hebei Province, China.
This study aims to explore the association between the triglyceride-glucose (TyG) index and the risk of carotid atherosclerosis (CAS) among Chinese steelworkers. This is a cross-sectional study involving a total of 4,203 Chinese steelworkers. The TyG index was calculated using the formula: TyG = Ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL) / 2].
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
From the Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC.
The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFMol Divers
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!