Rhythmic changes in colonic motility are regulated by period genes.

Am J Physiol Gastrointest Liver Physiol

Department of Internal Medicine, Division of Gastroenterology, University of Michigan, VA Ann Arbor Healthcare System, 2215 Fuller Rd., Ann Arbor, MI 48105, USA.

Published: February 2010

Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822504PMC
http://dx.doi.org/10.1152/ajpgi.00402.2009DOI Listing

Publication Analysis

Top Keywords

colonic motility
20
rhythmic changes
12
circular muscle
12
muscle contractility
12
changes colonic
8
motility regulated
8
biological clock
8
clock genes
8
intracolonic pressure
8
per1per2 double-knockout
8

Similar Publications

Background: Cytoskeleton-associated protein 2 like () has been demonstrated to mediate the cell cycle in cancer cells. However, it is unknown whether CKAP2L impacts colorectal cancer (CRC). The purpose of this study was to investigate the role of in CRC.

View Article and Find Full Text PDF

Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer (LARC). Pathological complete regression is closely linked to disease outcomes. However, biomarkers predicting nCRT response and patient survival are lacking for LARC.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: TongXieYaoFang (TXYF), a classical formula used in Traditional Chinese Medicine, is renowned for its efficacy in treating chronic abdominal pain and diarrhoea. Modern research suggests that fundamental relief from these symptoms depends on complete intestinal mucosal healing, which normalises gut secretory functions. Consensus between traditional and modern medical theories indicates that TXYF is particularly suitable for treating the remission phase of ulcerative colitis (UC).

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. The Fat mass and obesity-associated protein (FTO), a genetic variant associated with obesity, significantly impact the energetic metabolism of mechanical tumors. However, research on the function of FTO in CRC is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!