Acute treatment with diphenyl diselenide inhibits glutamate uptake into rat hippocampal slices and modifies glutamate transporters, SNAP-25, and GFAP immunocontent.

Toxicol Sci

Laboratory of Studies on the Purinergic System, Post-Graduation Program in Biological Sciences-Biochemistry, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre/RS, Brazil.

Published: February 2010

Diphenyl diselenide (PhSe)(2) is a selenium organic compound that has been described to inhibit glutamate binding at synaptic membranes and uptake into cortical slices, but there are no studies about its effects on glutamate transporters and related synaptic proteins. Hippocampal slices from rats treated acutely with (PhSe)(2) (1, 10, and 100 mg/kg, oral route) were evaluated on glutamate uptake, redox state, the immunocontent of glial (glutamate/aspartate transporter [GLAST] and glutamate transporter type I [GLT1]), neuronal (excitatory amino acid carrier 1 [EAAC1]), and vesicular (vesicular glutamate transporter 1 [VGLUT1]) glutamate transporters. Besides, cell viability was evaluated by glial fibrillar acid protein (GFAP) and synaptosomal-associated protein 25 (SNAP-25) immunocontent and 4', 6-diamidino-2-phenylindole (DAPI) and Fluoro Jade C staining. Hippocampal slices from rats treated with (PhSe)(2) exhibited a nondose-dependent inhibition of glutamate uptake (53, 38, and 45%, respectively). All doses increased EAAC1, decreased SNAP-25, did not modify GLT1 immunocontent, and there was no evidence of oxidative stress. (PhSe)(2) (100 mg/kg) increased 32% GLAST, decreased 34% VGLUT1, and 21% GFAP immunocontent. Besides, (PhSe)(2) (100 mg/kg) decreased by 25% GFAP-stained astrocytes and 27% DAPI-stained cells in the CA1 subfield. Our results suggest that the increase of EAAC1 and GLAST immunocontent by (PhSe)(2) might be a compensatory mechanism by surviving cells in order to reduce extracellular glutamate levels, avoiding possible neurotoxic effects. The impairment of glutamate uptake by the highest dose of (PhSe)(2) seems to be related to a decrease on VGLUT1, SNAP-25, and damage to astrocytes. Since there were no signs of oxidative stress, our findings revealed that depending on the dose, acute administration of (PhSe)(2) causes modifications in important synaptic-related proteins and damage to the astrocytes, and these events must be taken into account in its pharmacological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfp282DOI Listing

Publication Analysis

Top Keywords

glutamate uptake
16
hippocampal slices
12
glutamate transporters
12
phse2 100
12
100 mg/kg
12
glutamate
11
diphenyl diselenide
8
gfap immunocontent
8
phse2
8
slices rats
8

Similar Publications

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

[A comparative study on the diagnostic value of F-PSMA PET/CT PRIMARY score and PSMA expression score for clinically significant prostate cancer].

Zhonghua Yi Xue Za Zhi

January 2025

Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China.

To compare the diagnostic value of fluorine 18-labelled prostate-specific membrane antigen (PSMA) PET/CT PRIMARY score and PSMA expression score for clinically significant prostate cancer (csPCa). The data of 70 patients with prostate cancer who underwent radical prostatectomy at Beijing Hospital from February 1, 2019 to February 29, 2024 were retrospectively analyzed. All patients underwent whole body F-PSMA PET/CT examination before surgery and pathological large sections of prostate specimens were made after surgery.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Infectious Spleen and Kidney Necrosis Virus ORF093R and ORF102R Regulate Glutamate Metabolic Reprogramming to Support Virus Proliferation by Interacting with c-Myc.

Int J Mol Sci

January 2025

Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!