Previous research on the effects of intracranial stents on arterial hemodynamics has involved computational hemodynamics (CHD) simulations applied to artificially generated stent models. In this study, accurate geometric reconstructions of in-vitro (PTFE tube) and ex-vivo (canine artery) deployed stents based on ultra-high resolution MicroCT imaging were used. The primary goal was to compare the hemodynamic effects of deployment in these two different models and to identify flow perturbations due to deployment anomalies such as stent malapposition and strut prolapse, important adverse mechanics occurring in clinical practice, but not considered in studies using idealized stent models. Ultra-high resolution MicroCT data provided detailed visualization of deployment characteristics allowing for accurate in-stent flow simulation. For stent cells that are regularly and symmetrically deployed, the near wall flow velocities and wall shear stresses were similar to previously published results derived from idealized models. In-stent hemodynamics were significantly altered by misaligned or malapposed stent cells, important effects not realistically captured in previous models. This research shows the feasibility and value of an ex-vivo stent model for MicroCT based CHD studies. It validates previous in-vitro studies and further contributes to the understanding of in-stent hemodynamics associated with adverse mechanics of self-expanding intracranial stents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2009.10.015 | DOI Listing |
Chin J Integr Med
January 2025
Digestive Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
Objective: To elucidate the mechanism of Banxia Houpo Decoction (BHD) in treating gastroesophageal reflux disease (GERD) by integrating and utilizing the compound analysis, network pharmacology, and empirical verification.
Methods: Ultra-high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was utilized to identify the primary compounds in BHD. Network pharmacology was employed to retrieve target genes.
Zhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFFood Chem
January 2025
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.
View Article and Find Full Text PDFBiometrics
January 2025
Department of Biostatistics, Brown University, Providence, RI 02912, United States.
Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!