A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. | LitMetric

Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes.

J Control Release

Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, P.O. Box 6128, Downtown Station, Montreal, QC, Canada H3C 3J7.

Published: April 2010

Taxanes are potent antimitotic agents that have demonstrated efficacy in a wide range of malignancies. Due to their poor water-solubility, these cytostatic drugs were first formulated with low molecular weight surfactants, e.g. Cremophor EL (CrEL) and Tween 80 (polysorbate 80), which are known to exhibit serious adverse effects in humans. In recent years, there has been growing interest in the design of more biocompatible formulations for both paclitaxel and docetaxel. Polymer-based drug carriers represent an attractive venue given the diversity in the array of existing polymers. Most notably, biopolyesters are vastly employed in the field of biomedical research given their biocompatibility and biodegradability. Polyester-based micelles and nanoparticles have been applied to the parenteral delivery of taxanes with varying degrees of success. Block copolymer micelles possess a unique core-shell structure generated through the self-assembly of amphiphilic copolymers in aqueous media. Although these systems have shown greatly enhanced tolerability compared to formulations based on low molecular weight surfactants, in some cases their failure to retain their cargo following parenteral administration has hindered their capacity to target taxanes to solid tumours. While polyester-based nanoparticles possess comparatively greater stability and drug targeting capacity, they frequently display a significant burst effect whereby a major portion of the cargo is immediately discarded from the carrier upon injection. This review focuses on the current application of polyester-based micelles and nanoparticles to the tumour targeting of taxanes. The preparation, loading efficiencies, release kinetics, cytotoxicity and in vivo behaviour of these systems is discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2009.11.012DOI Listing

Publication Analysis

Top Keywords

polyester-based micelles
12
micelles nanoparticles
12
parenteral delivery
8
delivery taxanes
8
low molecular
8
molecular weight
8
weight surfactants
8
taxanes
5
polyester-based
4
nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!