Cystic fibrosis mostly follows a single Phe508 deletion in CFTR (cystic fibrosis transmembrane regulator) (CFTRDeltaF508), thereby causing premature fragmentation of the nascent protein with concomitant alterations of diverse cellular functions. We show that CK2, the most pleiotropic protein kinase, undergoes allosteric control of its different cellular forms in the presence of short CFTR peptides encompassing the Phe508 deletion: these CFTRDeltaF508 peptides drastically inhibit the isolated catalytic subunit (alpha) of the kinase and yet up-regulate the holoenzyme, composed of two catalytic and two non-catalytic (beta) subunits. Remarkable agreement between in silico docking and our biochemical data point to different sites for the CFTRDeltaF508 peptide binding on isolated CK2alpha and on CK2beta assembled into the holoenzyme, suggesting that CK2 targeting may be perturbed in cells expressing CFTRDeltaF508; this could shed light on some pleiotropic aspects of cystic fibrosis disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026963PMC
http://dx.doi.org/10.1042/BJ20090813DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
16
phe508 deletion
12
fibrosis transmembrane
8
transmembrane regulator
8
allosteric control
8
cystic
4
regulator fragments
4
fragments phe508
4
deletion exert
4
exert dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!