The fusion of therapeutics and diagnostic medicine in an effort to provide individualized pharmacotherapy frequently requires the manipulation of drugs that target different enzymes and receptors. To this end, and as a strategy to increase the efficiency of drug development pipelines, new chemical entities are often developed that interact with more than one target. Angiotensin-converting enzyme (ACE), its homologue ACE2, neutral endopeptidase (NEP) and endothelin-converting enzyme (ECE-1) are metallopeptidases that are involved in the metabolism of biologically active peptides that impact on the regulation of the cardiovascular system. The benefit of the ACE/NEP; NEP/ECE and ACE/NEP/ECE dual and triple inhibitors is not only their possible increased efficacy with respect to blood pressure control, but also their other activities, such as antiproliferative, anti-fibrotic and anti-inflammatory, mediated by angiotensin II and atrial natriuretic peptide. Over the last few years a number of three-dimensional structures of these metallopeptidases have advanced our understanding of the mode of interaction between various ligands and their target binding sites. This information is invaluable in the rational design of new and improved drugs. Here we review the structural basis for the design of single and multiple metallopeptidase inhibitors for the treatment of cardiovascular disease. Moreover, we present recent advances in the development of ACE/ECE-1 inhibitors that are likely to have high potency and improved side effect profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138161209789271889 | DOI Listing |
Mol Cancer
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.
View Article and Find Full Text PDFOncogene
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Science, Gansu Agricultural University, Lanzhou 730000, China.
Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.
View Article and Find Full Text PDFACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!