We report the isolation of a highly active (k(cat)/K(M) approximately 10(5) M(-1)s(-1)) variant of the E. coli endopeptidase OmpT that selectively hydrolyzes peptides after 3-nitrotyrosine while effectively discriminating against similar peptides containing unmodified tyrosine (160-fold), sulfotyrosine (3600-fold), phosphotyrosine (>8000-fold), and phosphoserine (>8000-fold). The isolation of endopeptidase variants that can discriminate between substrates based on the post-translational modification of Tyr was made possible by implementing a multicolor flow cytometric assay for the screening of large mutant libraries. For the multicolor assay, a desired selection substrate was used simultaneously with multiple counterselection fluorescent substrates to isolate rare enzyme variants that displayed finely tuned substrate specificity. This work demonstrates that enzymes with exquisite selectivity can be isolated from large libraries using appropriate high throughput screening approaches and constitutes a critical step toward the production of a 3-nitrotyrosine-specific protease useful for proteomic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja907803kDOI Listing

Publication Analysis

Top Keywords

multicolor flow
8
proteases distinguish
4
distinguish post-translational
4
post-translational forms
4
forms tyrosine
4
tyrosine engineered
4
engineered multicolor
4
flow cytometry
4
cytometry report
4
report isolation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!