A new NMR option for monitoring the mobility of organic contaminants in SOM in the solid state has been successfully applied for the first time. This recently available noninvasive technique, magic angle spinning pulsed-field gradient (MAS PFG) NMR, combines both NMR spectroscopy and diffusometry to selectively monitor the diffusion of compounds sorbed in porous media or polymer matrices. Using this technique, the diffusion of toluene in humic acid particles has been studied. Measurements were performed under varying temperatures from 25 to 80 degrees C. The obtained diffusion coefficients were found to be in good agreement with those obtained from computer simulations reported elsewhere. Our results show a strong influence of the interaction of toluene with humic acid on its diffusion in the matrix even at elevated temperatures of up to 80 degrees C. The Arrhenius plot of the diffusivities shows a decrease in the activation energy of diffusion above 50 degrees C by a factor of 3. This change of activation energy is attributed to a structural change in the humic acid matrix that influences the mobility of toluene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es901358s | DOI Listing |
Animals (Basel)
January 2025
Department of Animal Nutrition, Faculty of Veterinary Medicine, Afyon Kocatepe University, ANS Campus, Afyonkarahisar 03200, Türkiye.
This research was carried out to determine the effects of potassium humate on the lactation performance and metabolic parameters of dairy cows during the transition period. Potassium humate was added to the concentrate feed at the following levels: (a) control (0%), (b) 0.5%, (c) 1%, (d) 1.
View Article and Find Full Text PDFToxics
January 2025
School of Computer Science and Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China.
Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.
View Article and Find Full Text PDFToxics
January 2025
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil amended with 45 (SnV1), 60 (SnV2), 75 (SnV3) days of vermicompost on atrazine catabolism. The atrazine degradation experiment lasted for 40 days.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Chemical and Environmental Engineering, University of Nottingham, Broga Road, Semenyih 43500, Selangor, Malaysia.
In this study, a pilot-scale in-vessel composter was used to treat a mixture of industrial biowaste, with soybean curd residue and saw dust as the major substrates. The composter is capable of treating up to 350 tons/month of waste, producing up to 150 tons/month of high-quality compost within a retention time of 7-10 days. The final compost has an average nitrogen-phosphorus-potassium content of 6%, moisture content of 28%, pH of 6.
View Article and Find Full Text PDFEnviron Res
January 2025
Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!