A novel in situ tool for the exposure and analysis of microorganisms in natural aquatic systems.

Environ Sci Technol

Analytical and Biophysical Environmental Chemistry, University of Geneva, 1211 Geneva 4, Switzerland.

Published: November 2009

To evaluate the effects of contaminants or nutrient limitation in natural waters, it is often desirable to perform controlled exposures of organisms. While in situ exposures are routine for caged organisms or macrophytes, they are extremely difficult to perform for microorganisms, mainly due to difficulties in designing an exposure device that isolates the cells while allowing rapid equilibration with the external media. In this paper, a stirred underwater biouptake system (SUBS) based on the diffusion of chemicals across a semipermeable membrane housing a controlled population of microorganisms is reported. Cd diffusion through the semipermeable membrane was evaluated by voltammetry using a microelectrode. Comparison of stirred and unstirred solutions demonstrated a significantly increased diffusive flux in the presence of stirring. Lab tests using Chlamydomonas reinhardtii showed that diffusion across the semipermeable membrane was not limiting with respect to the biouptake of Cd. The SUBS device was field tested and the results of viability studies and trace metal biouptake by C. reinhardtii are reported. No diffusion limitation due to the SUBS was observed for Cd under the tested field conditions. The SUBS device was also shown to be useful for field exposures and subsequent measurements of trace metal uptake and viability. The results support the future use of the SUBS for the in situ measurement of phytochelatin/metallothionein production, photosynthetic efficiency, or reporter gene induction of controlled organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es901492yDOI Listing

Publication Analysis

Top Keywords

semipermeable membrane
12
reported diffusion
8
diffusion semipermeable
8
subs device
8
device field
8
trace metal
8
subs
5
novel situ
4
situ tool
4
tool exposure
4

Similar Publications

Qualitative Research of Composite Graphene Membranes Using the Electric Mode in SEM and AFM.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.

The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.

View Article and Find Full Text PDF

Seawater reverse osmosis (SWRO)-pressure retarded osmosis (PRO) hybrid desalination system is being actively researched to reduce energy consumption by generating energy in the PRO. However, the SWRO-PRO hybrid system still faces the following challenges: low freshwater recovery and low energy generation. To resolve these challenges, this study first proposes a novel SWRO-Solar-driven desalination (SD)-PRO hybrid system for energy-efficient desalination.

View Article and Find Full Text PDF

This work presents the development of an amperometric biosensor for detecting aspartate aminotransferase (AST) activity in biological fluids using a platinum disk electrode as the working transducer. Optimal concentrations of substrates (aspartate, α-ketoglutarate) and the coenzyme (pyridoxal phosphate) were determined to ensure efficient biosensor operation. A semi-permeable poly-m-phenylenediamine membrane was applied to enhance selectivity against electroactive interferents.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Dynamic co-clustering and self-sorting in interactive protocell populations.

Angew Chem Int Ed Engl

December 2024

University of Bristol, Chemistry, School of Chemistry, University of Bristol, BS8 1TS, Bristol, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The design and implementation of collective actions in model protocell communities is an on-going challenge in synthetic protobiology. Herein, we covalently graft alginate or chitosan onto the outer surface of semipermeable enzyme-containing silica colloidosomes to produce hairy catalytic protocells with pH-switchable membrane surface charge. Binary populations of the enzymatically active protocells exhibit self-initiated stimulus-responsive changes in spatial organization such that the mixed community undergoes alternative modes of electrostatically induced self-sorting and reversible co-clustering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!