To obtain noble metal catalysts with high efficiency, long-term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO(2) nanotubes (NTs) by means of the pulsed-current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt-Pd binary catalysts are embed into TiO(2) NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken-structured Pt-Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt-Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO(2) NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900628DOI Listing

Publication Analysis

Top Keywords

poison resistance
12
pt-pd binary
8
vertically aligned
8
aligned tio2
8
tio2 nanotubes
8
noble metal
8
metal catalysts
8
tio2 nts
8
support material
8
high electrocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!