Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200904765 | DOI Listing |
Small
January 2025
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland.
Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan.
Implementing a hydrogen economy on an industrial scale poses challenges, particularly in developing cost-effective and stable catalysts for water electrolysis. This study explores the catalytic potential of selenium nanoparticles (Se-NPs) synthesized via a simple chemical bath deposition method for electrochemical and photoelectrochemical (PEC) water splitting. The successful fabrication of Se-NPs on fluorine-doped tin oxide (FTO) electrodes has been confirmed using a wide range of analytical tools like X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Department of PG Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, India.
This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China. Electronic address:
Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!