Peptide-functionalized thermo-sensitive hydrogels for sustained drug delivery.

Macromol Biosci

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.

Published: December 2009

In this study, a KRGDKK (Lys-Arg-Gly-Asp-Lys-Lys) peptide with a RGD sequence is utilized as a functional group to synthesize a novel thermo-sensitive hydrogel. The KRGDKK peptide prepared by a solid phase synthesis approach is coupled to the ends of a poly[(epsilon-caprolactone)-co-lactide]-poly(ethylene glycol)-poly[(epsilon-caprolactone)-co-lactide] (PCLA-PEG-PCLA) triblock copolymer to obtain peptide-PCLA-PEG-PCLA-peptide. The self-assembly behavior of both PCLA-PEG-PCLA and peptide-PCLA-PEG-PCLA-peptide copolymers in aqueous solution is investigated, and hydrogels prepared from PCLA-PEG-PCLA and peptide-PCLA-PEG-PCLA-peptide are also prepared. An in vitro cell viability study demonstrated that the peptide-PCLA-PEG-PCLA-peptide hydrogels do not exhibit an apparent cytotoxicity, which suggests that the hydrogels have promising potential as injectable drug-delivery systems. Furthermore, compared with the PCLA-PEG-PCLA hydrogels, the peptide-PCLA-PEG-PCLA-peptide hydrogels display improved mechanical properties because of hydrogen bonding between the amino groups of KRGDKK. An in vitro drug release study showed that the peptide-PCLA-PEG-PCLA-peptide hydrogels exhibit outstanding controlled release properties and the release of the drug could be sustained for more than a month without initial burst.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.200900298DOI Listing

Publication Analysis

Top Keywords

peptide-pcla-peg-pcla-peptide hydrogels
12
pcla-peg-pcla peptide-pcla-peg-pcla-peptide
8
hydrogels exhibit
8
hydrogels
7
peptide-pcla-peg-pcla-peptide
6
peptide-functionalized thermo-sensitive
4
thermo-sensitive hydrogels
4
hydrogels sustained
4
sustained drug
4
drug delivery
4

Similar Publications

Peptide-functionalized thermo-sensitive hydrogels for sustained drug delivery.

Macromol Biosci

December 2009

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.

In this study, a KRGDKK (Lys-Arg-Gly-Asp-Lys-Lys) peptide with a RGD sequence is utilized as a functional group to synthesize a novel thermo-sensitive hydrogel. The KRGDKK peptide prepared by a solid phase synthesis approach is coupled to the ends of a poly[(epsilon-caprolactone)-co-lactide]-poly(ethylene glycol)-poly[(epsilon-caprolactone)-co-lactide] (PCLA-PEG-PCLA) triblock copolymer to obtain peptide-PCLA-PEG-PCLA-peptide. The self-assembly behavior of both PCLA-PEG-PCLA and peptide-PCLA-PEG-PCLA-peptide copolymers in aqueous solution is investigated, and hydrogels prepared from PCLA-PEG-PCLA and peptide-PCLA-PEG-PCLA-peptide are also prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!