RNA methylase genes are common antibiotic resistance determinants for multiple drugs of the macrolide, lincosamide, and streptogramin B (MLS(B)) families. We used molecular methods to investigate the diversity, distribution, and abundance of MLS(B) methylases in waste lagoons and groundwater wells at two swine farms with a history of tylosin (a macrolide antibiotic structurally related to erythromycin) and tetracycline usage. Phylogenetic analysis guided primer design for quantification of MLS(B) resistance genes found in tylosin-producing Streptomyces (tlr(B), tlr(D)) and commensal/pathogenic bacteria (erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q)). The near absence of tlr genes at these sites suggested a lack of native antibiotic-producing organisms. The gene combination erm(ABCF) was found in all lagoon samples analyzed. These four genes were also detected with high frequency in wells previously found to be contaminated by lagoon leakage. A weak correlation was found between the distribution of erm genes and previously reported patterns of tetracycline resistance determinants, suggesting that dissemination of these genes into the environment is not necessarily linked. Considerations of gene origins in history (i.e., phylogeny) and gene distributions in the landscape provide a useful "molecular ecology" framework for studying environmental spread of antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-009-9610-0 | DOI Listing |
Microorganisms
December 2023
Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 52074 Aachen, Germany.
P7 (DSM 15243) is a bacterium that converts syngas (a mixture of CO, H, and CO) into hexanol. An optimized and scaled-up industrial process could therefore provide a renewable source of fuels and chemicals while consuming industry waste gases. However, the genetic engineering of this bacterium is hindered by its multiple restriction-modification (RM) systems: the genome of encodes at least ten restriction enzymes and eight methyltransferases (MTases).
View Article and Find Full Text PDFChemSusChem
August 2023
Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom.
FtpM from Aspergillus fumigatus was the first carboxyl methyltransferase reported to catalyse the dimethylation of dicarboxylic acids. Here the creation of mutant R166M that can catalyse the quantitative conversion of bio-derived 2,5-furandicarboxylic acid (FDCA) to its dimethyl ester (FDME), a bioplastics precursor, was reported. Wild type FtpM gave low conversion due to its reduced catalytic efficiency for the second methylation step.
View Article and Find Full Text PDFInt J Mol Sci
September 2022
Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland.
Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes.
View Article and Find Full Text PDFMethods Mol Biol
June 2022
Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
Halides are substrates and products of a number of biotechnologically important enzymes like dehalogenases, halide methyltransferases, and halogenases. Therefore, the determination of halide concentrations in samples is important. The classical methods based on mercuric thiocyanate are very dangerous, produce hazardous waste, and do not discriminate between chloride, bromide, and iodide.
View Article and Find Full Text PDFSci Total Environ
September 2022
Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States. Electronic address:
Arsenic can be methylated by arsenite (As(III)) S-adenosylmethionine methyltransferases (ArsMs) among various kingdoms of life. The intermediate product methylarsenite (MAs(III)) is highly toxic and can be utilized as an antibiotic by some microbes. ArsM gene is widely distributed in the members of every kingdom from bacteria to humans and displays a high diversity of sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!