The effect of different doses of visible (Vis), ultraviolet-capital A, Cyrillic (UVA), and mixed light (UVA + Vis) upon coenzyme Q(10) (CoQ(10)) and beta-carotene synthesis and biomass yield by the Sporobolomyces salmonicolor AL(1), Cryptococcus albidus AS(55), Cryptococcus laurentii AS(56), and C. laurentii AS(58) strains isolated from Antarctic samples was investigated. The beta-carotene concentration in the red strain biomass increased by 52% under irradiation with 11 J/cm(2) Vis, and the CoQ(10) concentration rose by 37% in relation to the control quantity obtained through dark cultivation. Under irradiation with 6 J/cm(2) UVA, the S. salmonicolor AL(1) strain synthesized 15% more beta-carotene; C. albidus AS(55), 22%; C. laurentii AS(56), 44%; and C. laurentii AS(58), 35% in relation to the control quantity. Irradiation with a low UVcapital A, Cyrillic + Vis dose significantly stimulated beta-carotene biosynthesis by the strains of the Cryptococcus genus (87%, 138%, and 100%), whereas S. salmonicolor AL(1) increased the beta-carotene content to a smaller degree (55%). Higher doses of all three irradiation types inhibited beta-carotene accumulation. Vis suppressed CoQ(10) biosynthesis in the Cryptococcus strains, whereas UVcapital A, Cyrillic and UVcapital A, Cyrillic + Vis inhibited it in all four strains. The S. salmonicolor AL(1) strain pre-treated with 0.02 J/cm(2) UVA synthesized twice as much CoQ(10) and beta-carotene when cultivated in the presence of Vis light in an 11-J/cm(2) dose.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8845-zDOI Listing

Publication Analysis

Top Keywords

salmonicolor al1
16
uvcapital cyrillic
12
coenzyme q10
8
beta-carotene
8
isolated antarctic
8
coq10 beta-carotene
8
albidus as55
8
laurentii as56
8
laurentii as58
8
irradiation j/cm2
8

Similar Publications

Production of biomass and extracellular polysaccharide (EPS) from psychrophilic Sporobolomyces salmonicolor AL1 in a stirred bioreactor was studied. The aspects of production technical-scale parameters, namely, bioreactor flow field, biomass and EPS production rates, oxygen mass transfer per input power, as well as important product properties, such as rheology and stability of EPS mixtures, were considered. The bioprocess was found to proceed in non-Newtonian flow with consistency coefficient rising typically to 0.

View Article and Find Full Text PDF

The Sporobolomyces salmonicolor AL(1) Antarctic strain was cultivated and two bioproducts were obtained: exopolysaccharide and biomass. The biologically active substances ergosterol, torularhodin, torulene, β-carotene and CoQ(10) were extracted from the biomass and were quantified as follows: ergosterol 5.2 ± 0.

View Article and Find Full Text PDF

The exopolysaccharide (EPS) production by psychrophilic Antarctic yeast Sporobolomyces salmonicolor AL₁ reached the maximum yield in medium containing sucrose (50 g/L) and diammonium sulfate (2.5 g/L) after a 5-d fermentation (5.64 g/L) at 22 °C, the dynamic viscosity of the culture broth reaching (after 5 d) 15.

View Article and Find Full Text PDF

The effect of different doses of visible (Vis), ultraviolet-capital A, Cyrillic (UVA), and mixed light (UVA + Vis) upon coenzyme Q(10) (CoQ(10)) and beta-carotene synthesis and biomass yield by the Sporobolomyces salmonicolor AL(1), Cryptococcus albidus AS(55), Cryptococcus laurentii AS(56), and C. laurentii AS(58) strains isolated from Antarctic samples was investigated. The beta-carotene concentration in the red strain biomass increased by 52% under irradiation with 11 J/cm(2) Vis, and the CoQ(10) concentration rose by 37% in relation to the control quantity obtained through dark cultivation.

View Article and Find Full Text PDF

Emulsifying power of mannan and glucomannan produced by yeasts.

Int J Cosmet Sci

October 2007

University of Food Technologies, Department of Organic Chemistry, 4002 Plovdiv, Bulgaria.

Subject of study was the colloid chemical properties of the biopolymers mannan, synthesized from strain Rhodotorula acheniorum MC, and glucomannan, synthesized from strain Sporobolomyces salmonicolor AL(1). Their emulsifying capacity was studied in model systems of aqueous solutions in concentrations from 0.5% to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!