Cancer cell migration is a leading cause of tumor recurrence and treatment failure. Previously, we reported that marchantin C exhibited promising antitumor activity by inducing microtubule depolymerization and apoptosis. In the present study, we investigated the effect of marchantin C on inhibition of migration in T98G and U87 cells. The scratch-induced migration, Boyden chamber and cell invasion assays were applied to determine that the migrating capacity and invasiveness of these glioma cell lines were inhibited when exposed to marchantin C at a low concentration. There are no obvious signs of apoptosis with this dose. Western blot analyses confirmed that MMP-2, a key role in cancer cell migration, was reduced after incubation with marchantin C in both glioma cell lines. In addition, signaling pathway investigations demonstrated that ERK/MAPK might be involved in MMP-2 downregulation, rather than the AKT/PI3K or JAK/STAT3 pathways. Moreover, marchantin C potently suppressed angiogenesis activity in vivo by CAM assay. This is the first study to demonstrate that marchantin C can inhibit glioma cell migration and invasiveness.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.9.1.10279DOI Listing

Publication Analysis

Top Keywords

cell migration
12
glioma cell
12
cancer cell
8
cell lines
8
marchantin
7
cell
6
migration
5
marchantin potential
4
potential anti-invasion
4
anti-invasion agent
4

Similar Publications

LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models.

J Clin Invest

January 2025

Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!