The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary, these three gene classes are not sufficient for flower organ specification. Rather, flower organ specification depends on complex interactions of several genes, and probably other non-genetic factors. Being useful to study systems of complex interactions, mathematical and computational models have enlightened the origin of the A, B and C stereotyped and robust expression patterns and the process of early flower morphogenesis. Here, we present a brief introduction to basic modeling concepts and techniques and review the results that these models have rendered for the particular case of the Arabidopsis thaliana flower organ specification. One of the main results is the uncovering of a robust functional module that is sufficient to recover the gene configurations characterizing flower organ primordia. Another key result is that the temporal sequence with which such gene configurations are attained may be recovered only by modeling the aforementioned functional module as a noisy or stochastic system. Finally, modeling approaches enable testable predictions regarding the role of non-genetic factors (noise, mechano-elastic forces, etc.) in development. These predictions, along with some perspectives for future work, are also reviewed and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2009.11.010DOI Listing

Publication Analysis

Top Keywords

flower organ
16
organ specification
12
flower
8
flower morphogenesis
8
flower development
8
complex interactions
8
non-genetic factors
8
functional module
8
gene configurations
8
abc genes
4

Similar Publications

Over lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches.

View Article and Find Full Text PDF

How parental factors shape the plant embryo.

Biochem Soc Trans

January 2025

Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.

Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.

View Article and Find Full Text PDF

The use of stored carbon is essential for new organ development in deciduous trees during early spring. However, the contribution of carbon to the development of new organs in early spring of subsequent years is not well understood. Using a C labelling approach, we investigated the reallocation of assimilated carbon into new aboveground organs on apple (Malus domestica) saplings in the following two years.

View Article and Find Full Text PDF

Introduction: In order to elucidate the physiological mechanism of post-flowering assimilate transport regulating the formation of yields in arid regions and to provide technological support for further water-saving and high yields in the wheat region in Xinjiang, we conducted a study on the effects of different fertility periods and different degrees of drought and re-watering on the post-flowering dry matter accumulation and transport of spring wheat and the characteristics of grain filling.

Methods: In two spring wheat growing seasons in 2023 and 2024, a split-zone design was used, with the drought-sensitive variety Xinchun 22 (XC22) and drought-tolerant variety Xinchun 6 (XC6) as the main zones and a fully irrigated control during the reproductive period [CK, 75%~80% field capacity (FC)], with mild drought at the tillering stage (T1, 60%~65% FC), moderate drought at the tillering stage (T2, 45%~50% FC), mild drought at the jointing stage (J1, 60%~65% FC), and mild drought at the jointing stage (J2, 45%~50% FC) as the sub-zones.

Results: The dry matter accumulation of the aboveground parts of wheat (stem sheaths, leaves, and spikes), the transfer rate and contribution rate of nutrient organs, the maximum filling rate (V), and the mean filling rate (V) increased significantly after re-watering in the T1 treatment, and decreased with the deepening of the degree of water stress.

View Article and Find Full Text PDF

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!