Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The misguided control of inflammatory signaling has been previously implicated in the pathogenesis of several neurological disorders, including Alzheimer's disease (AD). Induction of tumor necrosis factor-alpha (TNF-alpha), a central mediator of neuroinflammation, occurs commensurate with the onset of early disease in 3xTg-AD mice, which develop both amyloid plaque and neurofibrillary tangle pathologies in an age- and region-dependent pattern. Herein, we describe regulation inherent to 3xTg-AD neurons, which results in the loss of TNF-alpha mediated enhancement of inositol 1,4,5 trisphosphate (IP3R)-mediated Ca2+ release. This modulation also leads to significant down-regulation of IP3R signaling following protracted cytokine exposure. Through the experimental isolation of each AD-related transgene, it was determined that expression of the PS1M146V transgene product is responsible for the loss of the TNF-alpha effect on IP3R-mediated Ca2+ release. Furthermore, it was determined that the suppression of TNF-alpha receptor expression occurred in the presence of the presenilin transgene. Our findings attribute this familial AD mutation to suppressing a Ca2+-regulated signal cascade potentially intended to "inform" neurons of proximal neuroinflammatory events and trigger compensatory responses for protection of neural transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794907 | PMC |
http://dx.doi.org/10.1016/j.cellsig.2009.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!