Background: Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data.

Results: In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes.

Conclusion: This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785839PMC
http://dx.doi.org/10.1186/1471-2164-10-534DOI Listing

Publication Analysis

Top Keywords

mitochondrial genomes
12
herdmania momus
8
mitochondrial genome
8
chordate phylogeny
8
sister-group vertebrates
8
evolutionary dynamics
8
protein-coding genes
8
tunicate mitochondrial
8
amino acid
8
mitochondrial
6

Similar Publications

Comparative Analysis of Protist Communities in Oilsands Tailings Using Amplicon Sequencing and Metagenomics.

Environ Microbiol

January 2025

Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.

View Article and Find Full Text PDF

Transcriptomics and Proteomics Analysis of the Liver of Knockout Mice.

Int J Mol Sci

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.

View Article and Find Full Text PDF

: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. : This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs.

View Article and Find Full Text PDF

Species of the family Echeneidae are renowned for their capacity to adhere to various hosts using a sucking disc. This study aimed to examine the mitochondrial genome characteristics of three fish species (, , and ) within the family Echeneidae and determine their phylogenetic relationships. The findings revealed that the mitochondrial genome lengths of the three species were 16,611 bp, 16,648 bp, and 16,623 bp, respectively, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a D-loop region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!