Background: The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients.
Methods: The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied.
Results: Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45.
Conclusions: The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1468-1331.2009.02849.x | DOI Listing |
Brain Sci
March 2024
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences (DINOGMI), University of Genoa, 16132 Genoa, Italy.
(1) Background: In hereditary creatine transporter deficiency (CTD), there is an absence of creatine in the brain and neurological symptoms are present, including severe language impairment. However, the pathological changes caused by creatine deficiency that generate neuropsychological symptoms have been poorly studied. (2) Aims: To investigate if the language impairment in CTD is underpinned by possible pathological changes.
View Article and Find Full Text PDFCortex
February 2024
Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany. Electronic address:
Objective: Stimulation-based language mapping approaches that are used pre- and intraoperatively employ predominantly overt language tasks requiring sufficient language production abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS).
View Article and Find Full Text PDFPLoS Biol
September 2023
Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Human language is supported by a cortical network involving Broca's area, which comprises Brodmann Areas 44 and 45 (BA44 and BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and BA45 in humans and chimpanzees.
View Article and Find Full Text PDFbioRxiv
March 2023
Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Human language is supported by a cortical network involving Broca's area which comprises Brodmann Areas 44 and 45 (BA44, BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and 45 between humans and chimpanzees.
View Article and Find Full Text PDFBrain Sci
June 2022
Department of Linguistic, Literary, and Aesthetic Studies, University of Bergen, 5007 Bergen, Norway.
We suggest a later timeline for full language capabilities in Homo sapiens, placing the emergence of language over 200,000 years after the emergence of our species. The late Paleolithic period saw several significant changes. Homo sapiens became more gracile and gradually lost significant brain volumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!