Hypercholesterolemia and/or hypertension impair endothelial function in peripheral vasculature; however, their impact on endothelial cells of brain microvessels is unclear. We investigated the effects of hypercholesterolemia on the integrity of the blood-brain barrier (BBB) and the activity of astrocytes during N(omega)-nitro-L-arginine methyl ester (L-NAME) hypertension followed by angiotensin (ANG) II. We found significant decreases in superoxide dismutase levels with all treatments except ANG II and L-NAME plus ANG II, and in catalase concentrations except ANG II and cholesterol plus L-NAME. Nitric oxide (NO) concentrations were significantly decreased by L-NAME but significantly increased by cholesterol. L-NAME-stimulated plasma malondialdehyde (MDA), Ox-LDL, and cholesterol levels were significantly augmented by cholesterol. Glutathione (GSH) levels significantly decreased, while MDA, TNF-alpha, and Ox-LDL levels significantly increased in cholesterol and/or L-NAME. The increase in BBB permeability by acute hypertension in hypercholesterolemic hypertensive animals was less than that observed in chronically hypertensive animals. Brain vessels of L-NAME-treated animals showed a considerable loss of immunoreactivity for tight junction proteins, occludin, and ZO-1. Immunoreactivity for occludin and ZO-1 increased in cholesterol plus L-NAME and decreased in cholesterol. Glial fibrillary acidic protein (GFAP) immunoreactivity was seen in few astrocytes in the brain sections of L-NAME-treated animals, but increased in cholesterol plus L-NAME. Positive immunoreactivity for vascular endothelial growth factor (VEGF) was observed in cholesterol and cholesterol plus L-NAME plus ANG II. We suggest that hypercholesterolemia may affect BBB integrity through increasing the expression of tight junction proteins and GFAP and leading to the production of VEGF, at least partly, via increased NO, TNF-alpha, and catalase in hypertensive conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14647270802336650DOI Listing

Publication Analysis

Top Keywords

cholesterol l-name
16
increased cholesterol
16
cholesterol
10
integrity blood-brain
8
blood-brain barrier
8
l-name
8
l-name ang
8
hypertensive animals
8
l-name-treated animals
8
tight junction
8

Similar Publications

It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.

View Article and Find Full Text PDF

Despite accumulating data on underlying mechanisms, the influence of sex and prevalent cardio-metabolic co-morbidities on the manifestation and severity of immune checkpoint inhibitor (ICI)-induced cardiotoxicity has not been well defined. To elucidate whether sex and prevalent cardio-metabolic co-morbidities affect ICI-induced cardiotoxicity, we randomized 17-month-old male and female mice to receive control diet (CON) or high-fat diet (HFD) + L-NAME-a well-established mouse model of cardio-metabolic co-morbidities-for 17 weeks (n = 5-7), and evaluated markers of T-cell function in the spleen. As expected, HFD + L-NAME significantly increased body- and heart weight, and serum cholesterol levels, and caused no systolic dysfunction, however, led to diastolic dysfunction, cardiomyocyte hypertrophy, and increased fibrosis only in males compared to corresponding CON.

View Article and Find Full Text PDF

There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME).

View Article and Find Full Text PDF

Soursop leaf extract and fractions protects against L-NAME-induced hypertension and hyperlipidemia.

Front Nutr

August 2024

Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Introduction: Despite the high phenolic content of , little is known about its anti-hypertensive and antihyperlipidemic properties. This study evaluated the anti-hypertensive and antihyperlipidemic potential of leaf extracts.

Materials And Methods: Forty-two male Wistar rats were divided into seven groups of six animals each.

View Article and Find Full Text PDF

Background: Roxb. (named tufuling in Chinese, SGR) has both medicinal and edible value. SGR has obvious pharmacological activity, especially in anti-inflammation and treating immune system diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!