Reactivity of 6-halopurine analogs with glutathione as a radiotracer for assessing function of multidrug resistance-associated protein 1.

J Med Chem

Probe Research Section, Department of Molecular Probe, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.

Published: November 2009

AI Article Synopsis

  • 6-Bromo-7-[(11)C]methylpurine interacts with glutathione in the brain, becoming a substrate for the efflux pump MRP1, which is important for studying drug resistance.
  • The compound's conversion rate varies by species, indicating the need to modify its structure for accurate application in humans and other animals.
  • Testing different halogenated and methyl-substituted derivatives showed significant differences in reactivity across mouse, rat, and monkey brains, enhancing potential for assessing MRP1 function in various species.

Article Abstract

6-Bromo-7-[(11)C]methylpurine is reported to react with glutathione via glutathione S-transferases in the brain and to be converted into a substrate for multidrug resistance-associated protein 1 (MRP1), an efflux pump. The compound with a rapid conversion rate allows quantitative assessment of MRP1 function, but this rate is probably susceptible to interspecies differences. Hence, for application to different species, including humans, it is necessary to adjust the conversion rate by modifying the chemical structure. We therefore designed 6-halo-9-(or 7)-[(14)C]methylpurine (halogen: F, Cl, Br, or I), and evaluated them in vitro with respect to enzymatic reactivity with glutathione using brain homogenates from the mouse, rat, or monkey. There was a marked difference in reactivity between these species. Changes in the position of the methyl group and halogen on N-methyl-6-halopurine provided various compounds possessing wide-ranging reactivity with glutathione. In conclusion, the adjustment of reactivity of 6-bromo-7-[(11)C]methylpurine may allow assessment of MRP1 function in the brain in various species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm901332cDOI Listing

Publication Analysis

Top Keywords

multidrug resistance-associated
8
resistance-associated protein
8
conversion rate
8
assessment mrp1
8
mrp1 function
8
reactivity glutathione
8
reactivity
5
glutathione
5
reactivity 6-halopurine
4
6-halopurine analogs
4

Similar Publications

Introduction: The plasma membrane-bound protein, multi-drug resistance-associated protein 4 (), has gained attention for its pivotal role in facilitating the efflux of a wide range of endogenous and xenobiotic molecules. Its significance in adipogenesis and fatty acid metabolism has been brought to light by recent studies. Notably, research on knockout ( ) mice has established a link between the absence of and the development of obesity and diabetes.

View Article and Find Full Text PDF

Background: Microbiota-derived toxins indoxyl sulfate and hippuric acid were previously reported to be associated with altered pharmacokinetics of the immunosuppressant tacrolimus in liver transplant recipients, and ABC transporter proteins are likely to be involved in the transport of such substances, but the role has not been elucidated. The aim of this study was to assess the retention of indoxyl sulfate and hippuric acid in the plasma of liver transplantation subjects carrying different genotypes of and (changes in transporter activity due to genetic variation), and to explore whether genetic variation is involved in altering the relationship between microbe-derived toxins and tacrolimus pharmacokinetics.

Methods: Liver transplantation subjects treated with the immunosuppressive regimen tacrolimus, corticosteroids, and mycophyolate mofetil were included and divided into normal renal function group and chronic kidney disease group.

View Article and Find Full Text PDF

Chemo-resistance in ovarian cancer is currently a major obstacle to the treatment and recovery of ovarian cancer. Therefore, identifying factors associated with chemo-resistance in ovarian cancer may reverse chemo-sensitization. Using isobaric tags for relative and absolute quantitation (ITRAQ) technology, we found a small molecule peptide with annexin 1 (ANXA1) as a precursor protein.

View Article and Find Full Text PDF

Efflux and uptake transport and gut microbial reactivation of raloxifene glucuronides.

Basic Clin Pharmacol Toxicol

January 2025

Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.

Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail.

View Article and Find Full Text PDF

Breast cancer is one of the most common cancers among women. Nowadays postoperative adjuvant chemotherapy is the mainstay for clinical treatment of breast cancer. However, the emergence of multidrug resistance (MDR) in breast cancer has become a main reason for the failure of clinical chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: