The permanent electric dipole moments and magnetic g(e)-factors of praseodymium monoxide (PrO).

J Phys Chem A

Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA.

Published: November 2009

The R(4.5) and P(6.5) branch features of the XX (0, 0) band of praseodymium monoxide (PrO) have been studied at a resolution of approximately 50 MHz field free and in the presence of static electric and magnetic fields. The permanent electric dipole moments, mu(el), of 3.01(6) D and 4.72(5) D for the X(2) (Omega = 4.5) and [18.1] (Omega = 5.5) states, respectively, were determined from the analysis of the Stark spectra. The magnetic g(e)-factors of 4.48(8) and 5.73(6) for the X(2) (Omega = 4.5) and [18.1] (Omega = 5.5) states, respectively, were determined from the analysis of the Zeeman spectra. The g(e)-factors are compared with those computed using wave functions predicted from ligand field theory and ab initio calculations. The mu(el) value for the X(2) (Omega = 4.5) state is compared to ab initio and density functional predicted values and with the experimental values of other lanthanide monoxides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp900677gDOI Listing

Publication Analysis

Top Keywords

permanent electric
8
electric dipole
8
dipole moments
8
magnetic ge-factors
8
praseodymium monoxide
8
monoxide pro
8
omega [181]
8
[181] omega
8
omega states
8
states determined
8

Similar Publications

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac resynchronization therapy (CRT) is effective for treating heart failure but is under-researched in patients with common comorbidities like atrial fibrillation (AF).
  • The SMART registry enrolled 2035 patients to assess CRT response based on clinical outcomes over 12 months, focusing on factors like all-cause mortality, hospitalizations, and quality of life.
  • Results showed 58.9% of patients improved, but factors like age, AF, and diabetes were linked to lower CRT responsiveness, with patients having AF experiencing higher rates of hospitalizations and mortality compared to those in normal rhythm.
View Article and Find Full Text PDF

Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.

View Article and Find Full Text PDF

Electrical stimulation of injured nerves promotes recovery in animals and humans.

J Physiol

December 2024

Division of Reconstructive and Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

The frequent poor functional outcomes after delayed surgical repair of injured human peripheral nerves results in progressive downregulation of growth-associated genes in parallel with reduced neuronal regenerative capacity under each of the experimental conditions of chronic axotomy of neurones that remain without target contact, chronic distal nerve stump denervation, and chronic muscle denervation. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) accelerates the outgrowth of regenerating axons across the surgical site of microsurgical repair of a transected nerve. Exercise programmes also promote nerve regeneration with the combination of ES and exercise being the most effective.

View Article and Find Full Text PDF

Nanostructured bismuth ferrite (BiFeO) single-phase nanoparticles with 76.2% crystallinity and 100% perovskite structure were synthesized using a co-precipitation method. The X-ray diffraction pattern confirmed the perovskite structure of BFO, and Rietveld refinement demonstrated the presence of a triclinic structure with the 1 space group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!