AI Article Synopsis

Article Abstract

Sulfur hexafluoride (SF6), whether pure or mixed with inexpensive inert gas, has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate and/or collect it from waste gas streams. In this study, we investigated the pure SF6 and SF6-N2 mixture gas hydrates formation equilibrium aswell asthe gas separation efficiency in the hydrate process. The equilibrium pressure of SF6-N2 mixture gas was higher than that of pure SF6 gas. Phase equilibrium data of SF6-N2 mixture gas was similar to SF6 rather than N2. The kinetics of SF6-N2 mixture gas was controlled by the amount of SF6 at the initial gas composition as well as N2 gas incorporation into the S-cage of structure-II hydrate preformed by the SF6 gas. Raman analysis confirmed the N2 gas incorporation into the S-cage of structure-II hydrate. The compositions in the hydrate phase were found to be 71, 79, 80, and 81% of SF6 when the feed gas compositions were 40, 65, 70, and 73% of SF6, respectively. The present study provides basic information for the separation and purification of SF6 from mixed SF6 gas containing inert gases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es901350vDOI Listing

Publication Analysis

Top Keywords

sf6-n2 mixture
20
mixture gas
20
gas
15
pure sf6
12
sf6 gas
12
sf6
10
sf6 sf6-n2
8
gas hydrates
8
gas incorporation
8
incorporation s-cage
8

Similar Publications

Sulfur hexafluoride (SF), widely used in electric power systems, is one of the most potent greenhouse gases. Efficient separation of SF/N by adsorptive separation technology based on porous materials is of great significance in the industry yet remains a daunting challenge. Herein, a novel strategy is introduced to construct unique pore channels with multiple SF nano-traps by precisely selecting bipyrazole ligands to design the nonpolar surface of microporous metal-organic frameworks (MOFs), which significantly enhances the material's affinity for SF.

View Article and Find Full Text PDF

It is essential for the industry to create an adsorbent that combines a high capacity with selectivity to achieve the effective separation of SF from gas mixtures. In this study, we prepared a cost-effective nickel-based metal-organic framework (MOF), Ni(BTC)(BPY), which features hydrogen-rich ultramicroporous channels specifically designed for separating SF/N gas mixtures. The findings from the adsorption experiments demonstrated that Ni(BTC)(BPY) achieved a remarkable SF adsorption capacity of 5.

View Article and Find Full Text PDF

Self-adaptive Coordination Evolution Mediated Pore-Space-Partition in Metal-Organic Frameworks for Boosting SF/N Separation.

Angew Chem Int Ed Engl

November 2024

College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China.

The controllable and precise structural regulation of metal-organic frameworks (MOFs) based on isoreticular chemistry is an effective strategy for creating functional material platforms, such as efficient porous adsorbents. Herein, for the first time, mediated by an unprecedented self-adaptive coordination evolution (SACE) on pseudo-D-symmetric [M(μ-O)(COO)] (M=Mn/Fe) clusters, two pore space partitioned MOFs (CTGU-47-Mn/Fe, CTGU=China Three Gorges University) have been successfully constructed. Owing to the more confined adsorption space and dense binding sites produced by pore space partitioning (PSP), the CTGU-47-Mn/Fe exhibit significantly enhanced performance in the capture or recovery SF (greenhouse/electronic specialty gas) from SF/N mixture compared to their non-partitioned homologous structures (CTGU-46-Mn/Fe) with adsorption selectivity increased from 37/72 to 634/157 (v/v, 10/90, 100 kPa).

View Article and Find Full Text PDF

SF/Nmixture is an alternative gas of SF, which is already used in electrical equipment. When a malfunction occurs , SF/Nwill decompose and further react with trace water and oxygen to produce nitrogen-containing gases such as NO, NO, NO and NF. It is necessary to monitor these gases to ensure the safe operation of the equipment.

View Article and Find Full Text PDF

Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2.

Micromachines (Basel)

July 2023

Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China.

The use of flexible, built-in, ultra-high-frequency (UHF) antenna sensors is an effective method to solve the weak high-frequency electromagnetic wave signal sensing of partial discharge (PD) inside gas-insulated switchgears (GISs), and the compatibility of flexible UHF antenna sensor substrate materials and SF6/N2 mixtures is the key to the realization of a flexible UHF antenna sensor inside a GIS. Based on this, this paper builds an experimental platform for the compatibility of a 30% SF6/70% N2 gas mixture and a PD flexible UHF antenna sensor substrate and conducts compatibility experiments between the 30% SF6/70% N2 gas mixture and PD flexible UHF antenna sensor substrate under different temperatures in combination with the actual operating temperature range of the GIS. In this article, a Fourier transform infrared spectrometer, scanning electron microscope and X-ray photoelectron spectrometer were used to test and analyze the gas composition, the surface morphology and the elemental change in the PD flexible UHF antenna sensor substrate, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!