Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices.

J Am Chem Soc

Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), UMR 7515, CNRS-ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 2, France.

Published: December 2009

Two functional ethynyl-pyrene derivatives have been designed and synthesized by di- and tetra-substitutions of bromo pyrene derivatives with N-(4-ethynylphenyl)-3,4,5-tris(hexadecyloxy)benzamide fragments. The photoluminescence wavelength of the pyrene core can be tuned by the substitution pattern and the state of matter (solid, solution, gel, or liquid crystal). The disubstituted pyrene derivative 1 is not mesomorphic but produces robust and highly fluorescent gels in DMF, toluene, and cyclohexane. The well-defined fibers and ropes of the gel states were characterized by SEM and laser scanning confocal microscopy, and extended over several micrometers. The gels were integrated as active layers in field-effect transistors, which provided good bulk electron and hole charge mobilities as well as light emission generation. The tetra-substituted pyrene derivative is not a gelator but displays a stable liquid crystalline phase with 2D hexagonal symmetry between 20 and 200 degrees C. The pronounced luminescence properties of the mesophase allow one to observe original mesophase textures with flower-like patterns directly by fluorescence microscopy without crossed-polarizers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja908061qDOI Listing

Publication Analysis

Top Keywords

pyrene derivative
8
luminescent ethynyl-pyrene
4
ethynyl-pyrene liquid
4
liquid crystals
4
crystals gels
4
gels optoelectronic
4
optoelectronic devices
4
devices functional
4
functional ethynyl-pyrene
4
ethynyl-pyrene derivatives
4

Similar Publications

Dipicolylamine Derivatives Bearing Pyrene and Anthracene as Molecular Probes for Cu and HS.

J Fluoresc

January 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.

Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with highly ordered structures and predictable optoelectronic properties provide an ideal platform to investigate the electrochemiluminescence (ECL) performance based on organic materials by atomically varying the molecular construction. Herein, the effect of imine-bond orientation on the ECL performance of COFs is investigated. We report two COFs (NC-COF and CN-COF) with different orientations of imine bonds using pyrene donor units (D) and bipyridine acceptor motifs (A) monomers.

View Article and Find Full Text PDF

A pyrene-derived fluorescent probe (P4CG) was designed and synthesized for the purpose of detecting protamine and trypsin activity. The anionic probe self-assembled with protamine, driven by electrostatic and hydrophobic interactions, exhibiting a sensing behavior towards protamine in a fluorescence ratiometric manner. The assay demonstrated high sensitivity, with a limit of detection (LOD) of 13.

View Article and Find Full Text PDF

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF

ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!