To study the supramolecular polymerisation mechanisms of a self-assembling system, concentration- and temperature-dependent measurements can both be used to probe the transition from the molecular dissolved state to the aggregated state. In this report, both methods are evaluated to determine their effectiveness in identifying and quantifying the self-assembly mechanism for isodesmic and cooperative self-assembling systems. It was found that for a rapid and unambiguous determination of the self-assembly mechanism and its thermodynamic parameters, temperature-dependent measurements are more appropriate. These studies allow the acquisition of a large data set leading to an accurate determination of the self-assembly mechanism and quantification of the different thermodynamic parameters that describe the supramolecular polymerisation. For a comprehensive characterisation, additional concentration-dependent measurements can be performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200902415 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFBiochemistry
January 2025
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9, Leontovycha 9, Kyiv 01054, Ukraine.
The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".
View Article and Find Full Text PDFACS Macro Lett
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types.
View Article and Find Full Text PDFChemistry
January 2025
university of science and technology of china, School of Nuclear Science and Technology, China, 230029, HEFEI, CHINA.
The final outcomes of supramolecular assembly are determined by the pathways and the formation of intermediates during the assembly process. We studied pathway complexity involving two consecutive pathways in supramolecular polymerization of naphthalene-diimide (NDI) derivative molecule. Depending on preparation methods anisotropic aggregates of J-type nanorods (Agg I) or more flexible H-type nanofibers (Agg II) are obtained from the identical initial state in solution of methyl cyclohexane (MCH) or MCH/CHCl3 mixtures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!