A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. | LitMetric

The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice.

Amino Acids

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.

Published: June 2010

L-serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the L-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of L-serine, D-serine, and L-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The L-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of L-serine increased in the livers of mice fed 2% protein; in contrast, D-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. D-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of L-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase L-serine and decrease D-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-009-0387-8DOI Listing

Publication Analysis

Top Keywords

mice fed
12
low protein
8
amino acids
8
acids enzymes
8
enzymes serine
8
l-serine biosynthetic
8
liver kidney
8
levels l-serine
8
degradative enzymes
8
livers mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!