Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
L-serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the L-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of L-serine, D-serine, and L-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The L-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of L-serine increased in the livers of mice fed 2% protein; in contrast, D-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. D-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of L-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase L-serine and decrease D-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-009-0387-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!