Two outlines for mixed model based approaches to quantitative trait locus (QTL) mapping in existing maize hybrid selection programs are presented: a restricted maximum likelihood (REML) and a Bayesian Markov Chain Monte Carlo (MCMC) approach. The methods use the in-silico-mapping procedure developed by Parisseaux and Bernardo (2004) as a starting point. The original single-point approach is extended to a multi-point approach that facilitates interval mapping procedures. For computational and conceptual reasons, we partition the full set of relationships from founders to parents of hybrids into two types of relations by defining so-called intermediate founders. QTL effects are defined in terms of those intermediate founders. Marker based identity by descent relationships between intermediate founders define structuring matrices for the QTL effects that change along the genome. The dimension of the vector of QTL effects is reduced by the fact that there are fewer intermediate founders than parents. Furthermore, additional reduction in the number of QTL effects follows from the identification of founder groups by various algorithms. As a result, we obtain a powerful mixed model based statistical framework to identify QTLs in genetic backgrounds relevant to the elite germplasm of a commercial breeding program. The identification of such QTLs will provide the foundation for effective marker assisted and genome wide selection strategies. Analyses of an example data set show that QTLs are primarily identified in different heterotic groups and point to complementation of additive QTL effects as an important factor in hybrid performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793393PMC
http://dx.doi.org/10.1007/s00122-009-1205-0DOI Listing

Publication Analysis

Top Keywords

qtl effects
20
intermediate founders
16
mixed model
12
identification qtls
8
maize hybrid
8
breeding program
8
model based
8
founders parents
8
qtl
6
founders
5

Similar Publications

Identification of inheritance and genetic loci responsible for wrinkled fruit surface phenotype in chili pepper () by quantitative trait locus analysis.

Mol Breed

January 2025

Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan.

Unlabelled: The phenotypes of chili pepper () fruit are sometimes characterized by having either smooth or wrinkled surfaces, both of which are commercially important. However, as the inheritance patterns and responsible loci have not yet been identified, it is difficult to control fruit surface traits in conventional chili pepper breeding. To obtain new insights into these aspects, we attempted to clarify the genetic regulation mechanisms responsible for the wrinkled surface of fruit from the Japanese chili pepper 'Shishito' (.

View Article and Find Full Text PDF

The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment.

View Article and Find Full Text PDF

Meta-assembly of genomic associations to identify cattle fat depot candidate genes and pleiotropic effects.

BMC Genomics

December 2024

School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia.

Background: Fat traits in cattle are considered important due to their contribution to beef eating quality and carcass economic value. Discovering the genes controlling fat traits in cattle will enable better selection of these traits, but identifying these genes in individual experiments has proven difficult. Compared to individual experiments, meta-analyses allow greater statistical power for detecting quantitative trait loci and identifying genes that influence single and multiple economically important fat traits.

View Article and Find Full Text PDF

Identification of genetic loci for seed shattering in Italian ryegrass (Lolium multiflorum Lam.).

Theor Appl Genet

December 2024

Division of Feed and Livestock Research, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.

We have identified a unique genetic locus for seed shattering in Italian ryegrass that has an exceedingly large effect and shows partial dominance for reduced seed shattering. Genetic improvement of seed retention in forage grasses can contribute to improving their commercial seed production. The objective of this study was to identify the genetic loci responsible for seed shattering in Italian ryegrass (Lolium multiflorum Lam.

View Article and Find Full Text PDF

Plant regeneration in tissue cultures is crucial for the application of biotechnological methods to plant breeding. However, the genetic basis of in vitro plant regeneration is not fully understood. For cucumber, regeneration protocols from different types of explants have been reported, but thus far, the molecular basis of regeneration from cotyledon explants has only been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!