This paper reviews the structure, function, and pathophysiology of glucagon-like peptide 1 (GLP-1). It describes the physiology and pathophysiology of the incretin axis, of which GLP-1 is a component, as well as the biosynthesis, secretion, activity, and degradation of this intestinal hormone. Effects of GLP-1 on the endocrine function of the pancreas, cardiovascular system, central nervous system, and on water-electrolyte balance have been also presented.
Download full-text PDF |
Source |
---|
Pharmaceutics
December 2024
Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
Glucagon-like peptide-1 (GLP-1) receptor is currently one of the most explored targets exploited for the management of diabetes and obesity, with many aspects of its mechanisms behind cardiovascular protection yet to be fully elucidated. Research dedicated towards the development of oral GLP-1 therapy and non-peptide ligands with broader clinical applications is crucial towards unveiling the full therapeutic capacity of this potent class of medicines. This study describes the virtual screening of a natural product database consisting of 695,133 compounds for positive GLP-1 allosteric modulation.
View Article and Find Full Text PDFMolecules
December 2024
Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Diabetes, "Pius Brinzeu" Emergency Hospital, 300723 Timisoara, Romania.
Insulin resistance (IR) is the most important factor involved in the pathogenesis of type 2 diabetes but may also develop in type 1 diabetes (T1DM). Developing IR in patients with T1DM may generate a burden in achieving glycemic targets and may deteriorate the overall prognosis. This review aims to describe the pathogenesis of IR in T1DM, summarize the common associations of IR with other conditions in patients with T1DM, describe the consequences of developing IR in these patients, and present the interventions that target IR in people with T1DM.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
School of Medicine, PROMISE Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy.
Chronic respiratory disorders are the third leading cause of mortality globally. Consequently, there is a continuous pursuit of effective therapies beyond those currently available. The therapeutic potential of the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide/GLP-1 (GIP/GLP-1) receptor agonists extends beyond the regulation of glycemia, including glucometabolic, cardiovascular, and renal effects, rendering them viable candidates, due to their mechanisms of action, for the possible treatment of respiratory disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!