Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy.

Sci Signal

Parasitology Research Center, Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.

Published: November 2009

The parasite Trypanosoma cruzi, which causes Chagas' disease, differentiates in the cytosol of its host cell and then replicates and spreads infection, processes that require the long-term survival of the infected cells. Here, we show that in the cytosol, parasite-derived neurotrophic factor (PDNF), a trans-sialidase that is located on the surface of T. cruzi, is both a substrate and an activator of the serine-threonine kinase Akt, an antiapoptotic molecule. PDNF increases the expression of the gene that encodes Akt while suppressing the transcription of genes that encode proapoptotic factors. Consequently, PDNF elicits a sustained functional response that protects host cells from apoptosis induced by oxidative stress and the proinflammatory cytokines tumor necrosis factor-alpha and transforming growth factor-beta. Given that PDNF also activates Akt by binding to the neurotrophic surface receptor TrkA, we propose that this protein activates survival signaling both at the cell surface, by acting as a receptor-binding ligand, and inside cells, by acting as a scaffolding adaptor protein downstream of the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854580PMC
http://dx.doi.org/10.1126/scisignal.2000374DOI Listing

Publication Analysis

Top Keywords

trypanosoma cruzi
8
host cells
8
cruzi targets
4
akt
4
targets akt
4
akt host
4
cells
4
cells intracellular
4
intracellular antiapoptotic
4
antiapoptotic strategy
4

Similar Publications

Background: Determining esophageal and colon involvement in patients with Chagas disease occurs through invasive and uncomfortable examinations, which in most cases are not performed. The objective of this study was to assess the involvement of anti-M2-pyruvate kinase (M2-PK) autoantibodies in the development of digestive alterations and/or in the diagnosis of the digestive form of human Chagas disease.

Methods: The total IgG and isotype (IgG1, IgG2, IgG3, IgG4) production was quantified using the antigen of Trypanosoma cruzi and the human M2-PK recombinant protein via the ELISA technique.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is a protozoan parasite which causes Chagas disease. Mother-to-child transmission is the main route of transmission in vector-free areas. Congenital Chagas disease refers specifically to cases arising from this route of transmission.

View Article and Find Full Text PDF

Expression Analysis of Thirteen Genes in Response to Nifurtimox and Benznidazole in Mexican Isolates of Trypanosoma cruzi by Digital PCR.

Acta Parasitol

January 2025

Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.

Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression.

View Article and Find Full Text PDF

Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!