Variable temperature equilibrium studies were used to derive thermodynamic data for formation of eta(1) nitrile complexes with Mo(N[(t)Bu]Ar)(3), 1. (1-AdamantylCN = AdCN: DeltaH(degrees) = -6 +/- 2 kcal mol(-1), DeltaS(degrees) = -20 +/- 7 cal mol(-1) K(-1). C(6)H(5)CN = PhCN: DeltaH(degrees) = -14.5 +/- 1.5 kcal mol(-1), DeltaS(degrees) = -40 +/- 5 cal mol(-1) K(-1). 2,4,6-(H(3)C)(3)C(6)H(2)CN = MesCN: DeltaH(degrees) = -15.4 +/- 1.5 kcal mol(-1), DeltaS(degrees) = -52 +/- 5 cal mol(-1) K(-1).) Solution calorimetric studies show that the enthalpy of formation of 1-[eta(2)-NCNMe(2)] is more exothermic (DeltaH(degrees) = -22.0 +/- 1.0 kcal mol(-1)). Rate and activation parameters for eta(1) binding of nitriles were measured by stopped flow kinetic studies (AdCN: DeltaH(on)(++) = 5 +/- 1 kcal mol(-1), DeltaS(on)(++) = -28 +/- 5 cal mol(-1) K(-1); PhCN: DeltaH(on)(++) = 5.2 +/- 0.2 kcal mol(-1), DeltaS(on)(++) = -24 +/- 1 cal mol(-1) K(-1); MesCN: DeltaH(on)(++) = 5.0 +/- 0.3 kcal mol(-1), DeltaS(on)(++) = -26 +/- 1 cal mol(-1) K(-1)). Binding of Me(2)NCN was observed to proceed by reversible formation of an intermediate complex 1-[eta(1)-NCNMe(2)] which subsequently forms 1-[eta(2)-NCNMe(2)]: DeltaH(++)(k1) = 6.4 +/- 0.4 kcal mol(-1), DeltaS(++)(k1) = -18 +/- 2 cal mol(-1) K(-1), and DeltaH(++)(k2) = 11.1 +/- 0.2 kcal mol(-1), DeltaS(++)(k2) = -7.5 +/- 0.8 cal mol(-1) K(-1). The oxidative addition of PhSSPh to 1-[eta(1)-NCPh] is a rapid second-order process with activation parameters: DeltaH(++) = 6.7 +/- 0.6 kcal mol(-1), DeltaS(++) = -27 +/- 4 cal mol(-1) K(-1). The oxidative addition of PhSSPh to 1-[eta(2)-NCNMe(2)] also followed a second-order rate law but was much slower: DeltaH(++) = 12.2 +/- 1.5 kcal mol(-1) and DeltaS(++) = -25.4 +/- 5.0 cal mol(-1) K(-1). The crystal structure of 1-[eta(1)-NC(SPh)NMe(2)] is reported. Trapping of in situ generated 1-[eta(1)-NCNMe(2)] by PhSSPh was successful at low temperatures (-80 to -40 degrees C) as studied by stopped flow methods. If 1-[eta(1)-NCNMe(2)] is not intercepted before isomerization to 1-[eta(2)-NCNMe(2)] no oxidative addition occurs at low temperatures. The structures of key intermediates have been studied by density functional theory, confirming partial radical character of the carbon atom in eta(1)-bound nitriles. A complete reaction profile for reversible ligand binding, eta(1) to eta(2) isomerization, and oxidative addition of PhSSPh has been assembled and gives a clear picture of ligand reactivity as a function of hapticity in this system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja905849aDOI Listing

Publication Analysis

Top Keywords

+/- kcal
44
kcal mol-1
44
+/- cal
40
cal mol-1
40
mol-1 k-1
40
+/-
21
mol-1
21
oxidative addition
16
mol-1 deltasdegrees
12
deltahon++ +/-
12

Similar Publications

Recurrent Kawasaki disease in a child with retropharyngeal involvement: a case report and literature review.

Medicine (Baltimore)

December 2014

From the Department of Pediatrics, Division of Pediatric Infectious Diseases (BA-K, EC, EI); Department of Ear, Nose, and Throat (MMK); Department of Pediatrics, Division of Pediatric Cardiology (MGR, ET); and Department of Radiology, Faculty of Medicine, Ankara University, Ankara, Turkey (SF).

Kawasaki disease (KD) is a multisystemic vasculitic disease. Recurrent KD is rare and generally presents in a similar clinical picture as the first episode, and early diagnosis with prompt treatment is the key point in preventing associated cardiovascular morbidities. A 9-year-old boy, who was diagnosed with KD when he was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!