The pathogenesis of the autoimmune disease, myasthenia gravis (MG), involves an antibody-mediated attack against acetylcholine receptors (AChRs). Since the relevant antibody response is T cell dependent, a therapeutic strategy aimed at T lymphocytes actively participating in the immune reaction to AChR should result in relatively selective suppression of AChR antibody. During an active immune response, T cells express receptors for interleukin 2 (IL2). In this study, we have used a genetically engineered fusion protein comprised of the binding region of IL2 and the toxic portion of diphtheria toxin (DAB486-IL2), to attempt to treat an experimental animal model of MG in rodents. We examined the effects of treatment with DAB486-IL2 in vivo on primary, ongoing, and secondary antibody responses to purified Torpedo AChR. Treatment of mice with intraperitoneal injections of DAB486-IL2 beginning at the time of immunization inhibited the primary AChR antibody response by 50% during the treatment period. Ongoing and secondary antibody responses to AChR were not suppressed in vivo by treatment with DAB486-IL2. In comparison, DAB486-IL2 was far more potent in suppressing antibody responses and lymphoproliferation in cell culture. At a dose comparable to that given in vivo, cellular proliferation and antibody production were virtually eliminated in a secondary response in vitro. The suppressive effect of DAB486-IL2 was much more pronounced when it was given at the time of initial antigen stimulation, as compared with its effect when given during an already established antibody response. These findings suggest that the effect of the fusion toxin on AChR antibody production was due predominantly to inhibition of T cells rather than B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-5728(91)90017-2 | DOI Listing |
Br J Dermatol
January 2025
Department of Dermatology, Yale University, New Haven, Connecticut, USA.
Background: Overexpression of interleukin (IL)-17A and IL-17F significantly influences psoriasis pathology. Until recently, biologics targeting IL-17A alone, like secukinumab, were used to treat psoriasis. Bimekizumab is a monoclonal IgG1 antibody that targets both IL-17A and IL-17F.
View Article and Find Full Text PDFLab Anim
January 2025
Department of Physiology, Faculty of Medicine, University of Colombo, Sri Lanka.
The immunogenicity of rabies vaccines is commonly measured by serological testing, which includes measuring rabies virus-neutralising antibody titre levels in the serum. Apart from humoral immunity, cellular immunity measurements are also helpful in assessing the immunogenicity and efficacy of rabies vaccinations. Recently, there has been an increased emphasis on cellular immunity measurements against rabies in humans and animals.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.
View Article and Find Full Text PDFViruses
December 2024
Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain.
This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!