New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868284PMC
http://dx.doi.org/10.1073/pnas.0906224106DOI Listing

Publication Analysis

Top Keywords

evolutionary biology
32
evolutionary
11
biology
9
basic science
8
science medicine
8
biology medicine
8
view bodies
8
biology taught
8
medical school
8
medicine
5

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.

View Article and Find Full Text PDF

New evidence for the earliest ornithischian dinosaurs from Asia.

iScience

January 2025

Center for Vertebrate Evolutionary Biology, Yunnan University, Kunming 650091, China.

The Early Jurassic ornithischian dinosaurs in Laurasia are dominated by armored dinosaurs, with other early ornithischian groups being rare. Here, a new taxon, gen. et sp.

View Article and Find Full Text PDF

The strong correlation between reproductive life cycle type and chromosome numbers in green plants has been a long-standing mystery in evolutionary biology. Within green plants, the derived condition of heterosporous reproduction has emerged from the ancestral condition of homospory in disparate locations on the phylogenetic tree at least 11 times, of which three lineages are extant. In all green plant lineages where heterospory has emerged, there has been a significant downsizing in chromosome numbers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!