Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model.

J Immunol

Laboratoire de Neuroimmunologie des Annélides, FRE Centre National de la Recherche Scientifique 2933, Groupe Signaux de Danger, Voies de Signalisation et Effecteurs, Université de Lille 1, 59655 Villeneuve d'Ascq, France.

Published: December 2009

A highly conserved ortholog of the human complex p43/endothelial monocyte-activating polypeptide II (EMAPII) was characterized in the CNS of the leech Hirudo medicinalis. As observed in mammals, the leech complex is processed to release the cytokine HmEMAPII. Taking advantages of these similarities, we have attempted to elucidate the role of EMAPII in the CNS using the leech model. Although EMAPII is considered a modulator of inflammatory reactions within the peripheral innate immune response in humans, its function in CNS immunity has yet to be described. Chemotaxis assays were conducted, revealing the ability of EMAPII to exert a chemoattractant effect on both leech and human microglial cells, indicating a novel function of this cytokine in the human brain. Quantitative RT-PCR analysis together with in situ hybridization and immunohistochemistry approaches showed that bacterial challenge induced the expression of HmEMAPII at the lesion site where microglial cells accumulated. Moreover, gene silencing experiments have demonstrated that the gene expression of HmEMAPII is under the control of a signaling pathway associated with the TLR HmTLR1, newly characterized in the CNS of our model. To the best of our knowledge, this is the first report showing evidence for (1) the chemoattractant properties of EMAPII on leech and human microglial cells, (2) the regulation by a TLR of the expression of a gene encoding a cytokine in the CNS of an invertebrate, and (3) an immune function of a TLR in a lophotrochozoan model.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900538DOI Listing

Publication Analysis

Top Keywords

microglial cells
12
immune function
8
regulation tlr
8
leech model
8
characterized cns
8
cns leech
8
leech human
8
human microglial
8
expression hmemapii
8
emapii
6

Similar Publications

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!