A Ca(2+) ion-dependent inactivation (CDI) of L-type Ca(2+) channels (LCC) is vital in limiting and shaping local Ca(2+) ion signalling in a variety of excitable cell types. However, under physiological conditions the unitary LCC properties that underlie macroscopic inactivation are unclear. Towards this end, we have probed the gating kinetics of individual cardiac LCCs recorded with a physiological Ca(2+) ion concentration (2 mM) permeating the channel, and in the absence of channel agonists. Upon depolarization the ensemble-averaged LCC current decayed with a fast and a slow exponential component. We analysed the unitary behaviour responsible for this biphasic decay by means of a novel kinetic dissection of LCC gating parameters. We found that inactivation was caused by a rapid decrease in the frequency of LCC reopening, and a slower decline in mean open time of the LCC. In contrast, with barium ions permeating the channel ensemble-averaged currents displayed only a single, slow exponential decay and little time dependence of the LCC open time. Our results demonstrate that the fast and slow phases of macroscopic inactivation reflect the distinct time courses for the decline in the frequency of LCC reopening and the open dwell time, both of which are modulated by Ca(2+) influx. Analysis of the evolution of CDI in individual LCC episodes was employed to examine the stochastic nature of the underlying molecular switch, and revealed that influx on the order of a thousand Ca(2+) ions may be sufficient to trigger CDI. This is the first study to characterize both the unitary kinetics and the stoichiometry of CDI of LCCs with a physiological Ca(2+) concentration. These novel findings may provide a basis for understanding the mechanisms regulating unitary LCC gating, which is a pivotal element in the local control of Ca(2+)-dependent signalling processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821560 | PMC |
http://dx.doi.org/10.1113/jphysiol.2009.178343 | DOI Listing |
J Med Chem
January 2025
Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse cedex, France.
To challenge the multidrug resistance of malaria parasites, new hybrid compounds were synthesized and evaluated against laboratory strains and multidrug-resistant clinical isolates. Among these hybrids, emoquine-1 was the most active on proliferative , with IC values in the range of 20-55 nM and a high selectivity index with respect to mammalian cells. This drug retained its activity on several multiresistant field isolates from Cambodia and Guiana, exhibited no cross-resistance to artemisinin, and is also very active against the quiescent stage of the artemisinin-resistant parasites, three features that constitute the gold standard for new antimalarial drugs.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China. Electronic address:
Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis.
View Article and Find Full Text PDFImmunity
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Electronic address:
Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Neurocrine Biosciences, Inc., San Diego, CA, USA.
Chem Commun (Camb)
January 2025
University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
A series of four original phosphine-free thioether-NHC manganese complexes have been synthesised and fully characterized. These complexes have been applied as efficient catalysts for the hydrogenation of alkenes and ketones at room temperature, with low catalyst loadings (TON up to 900).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!