AI Article Synopsis

Article Abstract

Glycine is an amino acid that has several applications in the pharmaceutical industry. Hence, growth of alpha-glycine crystals through solution crystallization is an important process. To gain a fundamental understanding of the seeded growth of alpha-glycine from aqueous solution, the (110) face of alpha-glycine crystal in contact with a solution of glycine in water has been simulated with molecular dynamics. The temporal change in the location of the interface of the alpha-glycine crystal seed has been characterized by detecting a density gradient. It is found that the alpha-glycine crystal dissolves with time at a progressively decreasing rate. Diffusion coefficients of glycine adjacent to (110) face of alpha-glycine crystal have been calculated at various temperatures (280, 285, 290, 295, and 300 K) and concentrations (3.6, 4.5, and 6.0 mol/l) and compared to that in the bulk solution. In order to gain a fundamental insight into the nature of variation in such properties at the interface and the bulk, the formation of hydrogen bonds at various temperatures and concentrations has been investigated. It is found that the nature of interaction between various atoms of glycine molecules, as characterized by radial distribution functions, can provide interesting insight into the formation of hydrogen bonds that in turn affect the diffusion coefficients at the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3258650DOI Listing

Publication Analysis

Top Keywords

alpha-glycine crystal
16
molecular dynamics
8
growth alpha-glycine
8
gain fundamental
8
110 face
8
face alpha-glycine
8
diffusion coefficients
8
formation hydrogen
8
hydrogen bonds
8
alpha-glycine
6

Similar Publications

Heat Capacities of α-, β-, and γ- Polymorphs of Glycine.

Molecules

November 2024

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic.

As a part of our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for two stable polymorphs (α and γ) of glycine (aminoacetic acid, CAS RN: 56-40-6). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The literature heat capacities obtained by adiabatic calorimetry are available in the temperature interval (7-304).

View Article and Find Full Text PDF

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules.

Acta Crystallogr C Struct Chem

July 2024

Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered L-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data.

View Article and Find Full Text PDF

In this work, we outlined an experimental workflow enabling the rapid assessment of primary and secondary nucleation and crystal growth kinetics. We used small-scale experiments in agitated vials with in situ imaging for crystal counting and sizing to quantify nucleation and growth kinetics of α-glycine in aqueous solutions as a function of supersaturation at isothermal conditions. Seeded experiments were required to assess crystallization kinetics when primary nucleation is too slow, especially at lower supersaturations often encountered in continuous crystallization processes.

View Article and Find Full Text PDF

Grinding Method for Phase Transformation of Glycine.

ACS Omega

May 2023

Functional Crystallization Center, Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yong-in, Gyeonggi-do 17104, South Korea.

Glycine had three polymorphs, two metastable phases (α-glycine, β-glycine) and one stable phase (γ-glycine). However, the phase transformation of glycine from α-phase to γ-phase was well known as the kinetically unfavorable process. In this study, a simple and effective grinding method for phase transformation of glycine from α-phase to γ-phase is proposed.

View Article and Find Full Text PDF

Key Parameters Impacting the Crystal Formation in Antisolvent Membrane-Assisted Crystallization.

Membranes (Basel)

January 2023

Institute of Mechanics, Materials and Civil Engineering-Materials & Process Engineering (iMMC-IMAP), Université Catholique de Louvain (UCLouvain), Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium.

Antisolvent crystallization is commonly used in the formation of heat-sensitive compounds as it is the case for most active pharmaceutical ingredients. Membranes have the ability to control the antisolvent mass transfer to the reaction medium, providing excellent mixing that inhibits the formation of local supersaturations responsible for the undesired properties of the resulting crystals. Still, optimization of the operating conditions is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!