Predicting atomic details of the unfolding pathway for YibK, a knotted protein from the SPOUT superfamily.

J Biomol Struct Dyn

Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland.

Published: February 2010

Several protein structures have been reported to contain intricate knots of the polypeptide backbone but the mechanism of the (un)folding process of knotted proteins remains unknown. The members of the SPOUT superfamily of RNA methyltransferases are some of the most intensely studied systems for investigation of the knot formation and function. YibK (whose biochemical function remains unknown) is the representative protein of the SPOUT superfamily. This protein exhibits a deep trefoil knot at the C-terminus. We conducted an extensive computational analysis of the unfolding process for the monomeric form of YibK. In order to predict the (un)folding pathway of YibK, we have calculated the order of secondary structure disassembly using UNFOLD, and performed thermal unfolding simulations using classical Molecular Dynamics (MD), as well as simulations employing reduced representation of the peptide chain using either MD with the UNRES method or the Monte Carlo (MC) unfolding with the REFINER method. Results obtained from all methods used in this work are in qualitative agreement. We found that YibK unfolds through four intermediate states. The trefoil knot in YibK disappears at the end of the unfolding process, long after the protein loses its native topology. We observed that the C- terminus leaves the knotting loop folded into a hairpin-like structure, in agreement with the results of coarse-grained simulation reported earlier. We propose that the folding pathway of YibK corresponds to the reversed sequence of events observed in the unfolding pathway elucidated in this study. Thus, we predict that the knot formation is the slowest part of the YibK folding process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2010.10507335DOI Listing

Publication Analysis

Top Keywords

unfolding pathway
12
pathway yibk
12
spout superfamily
12
unfolding process
12
unfolding
8
yibk
8
protein spout
8
superfamily protein
8
remains unknown
8
knot formation
8

Similar Publications

Background: Bipolar disorder (BD) has been associated with impaired cellular resilience. Recent studies have shown abnormalities in the unfolded protein response (UPR) in BD. The UPR is the cellular response to endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.

View Article and Find Full Text PDF

Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells.

Sci Adv

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!