A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Snail1 down-regulation using small interfering RNA complexes delivered through collagen scaffolds. | LitMetric

Control of gene expression via small interfering RNA has enormous potential for the treatment of a variety of diseases, including cancer and Huntington's disease. However, before any therapies can be developed, effective techniques for controlled delivery of these molecules must be devised. In this proof-of-concept study, small interfering RNA was complexed with a polymer and loaded into a biomaterial scaffold. The scaffold was introduced primarily to control the release of the complexes, and the polymer was introduced to improve the transfection efficiency. An optimal dose and complexation ratio were selected, at which more than 50% down-regulation of the target gene Snail1 was observed in two-dimensional culture. Delayed release of the complexes was observed, and significant sustained down-regulation of Snail1 was seen in a three-dimensional scaffold system after 7 days. Thus, the use of the scaffold altered the transfection profile significantly, demonstrating the feasibility of a collagen scaffold as a controlled release system for delivery of small interfering RNA-dendrimer complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc900241wDOI Listing

Publication Analysis

Top Keywords

small interfering
16
interfering rna
12
release complexes
8
scaffold
5
snail1 down-regulation
4
small
4
down-regulation small
4
interfering
4
complexes
4
rna complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!