Limitations in the methods employed to generate micrometric colloidal droplets hinder the emergence of key applications in the fields of material science and drug delivery. Through the use of dedicated nanofluidic devices and by taking advantage of an original physical effect called capillary focusing, we could circumvent some of these limitations. The nanofluidic (i.e., submicrometric) devices introduced herein are made of soft materials, and their fabrication relies upon rapid technologies. The objects that we have generated are simple droplets, multiple droplets, particles, and Janus particles whose sizes lie between 900 nm and 3 microm (i.e., within the colloidal range). Colloidal droplets have been assembled on-chip into clusters and crystals, yielding discrete diffraction patterns. We illustrate potential applications in the field of drug delivery by demonstrating the ability of multiple droplets to be phagocytosed by murine macrophage-type cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la9028047 | DOI Listing |
Molecules
January 2025
Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Background: Intravenous nanoemulsions (NEs) are gaining attention as potential delivery systems for poorly water-soluble substances like cannabidiol (CBD). This study aimed to develop novel NEs based on CBD-enriched hemp oils and evaluate their physiochemical properties.
Methods: The stability of hemp oils enriched with various concentrations of CBD (0.
Foods
January 2025
Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of (AA) and (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address:
Hypothesis: Nanobubbles (NBs) have been extensively investigated as a sustainable promoter for gas hydrate nucleation, which also contribute to the hydrate memory effect. However, less attention afforded to their effects on the hydrate-growth process, thus lacking a complete perspective of the overall effects from NBs on hydrate formation. We hypothesize that their effect on CO hydrate growth may vary depending on the properties of NBs.
View Article and Find Full Text PDFFood Res Int
February 2025
National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!